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ABSTRACT 

An algebra of difference operators is introduced and some of their properties 
are studied. It is shown that this is a C*-algebra and a differences analogue of 
G~_rding's inequality is proved. 

Introduction 

Vu le r61e que les op6rateurs aux diff6rences finies jouent en Analyse Num6- 

rique et l'efficacit6 de leur application aux probl6mes diff6rentiels, une 6tude 

ind6pendante des propri6t6s alg6briques et fonctionnelles de ces op6rateurs 

s'imposait depuis un certain temps. 

La th6orie g6n6rale des op6rateurs pseudodiff6rentiels ayant 6t6 raise au jour 

(cf. [4], [5]) et s'6tant av6r6e efficace dans les applications on ressentait un besoin 

urgent d'avancer sur cette vole la th6orie des opdrateurs aux diff6rences finies. 

Une 6tude ind6pendante de ces op6rateurs 6tait d 'autant  plus n6cessaire que 

darts tout voisinage d 'un " b o n "  probl6me diff6rentiel il existe des "mauvaises" 

approximations ne conservant pas sur les r6seaux les propri6t~s fondamentales 

du probl~me approxim6. 

On 6tudie dans cet article une alg~bre des familles uniparam6triques d'op6ra- 

teurs aux diff6rences finies, introduite dans [1], ce qui permet d'6tablir sans trop 

de difficult6s et dans toute sa g6n6ralit6 la th6orie elliptique de ces op6rateurs 

aux diff6rences finies, la notion d'ellipticit6 de tels op6rateurs ayant 6t6 introduite 

dans [1] et, ind6pendamment dans [7] pour les sch6mas aux diff6rences finies 

approximant un op6rateur 611iptique diff6rentiel. Les propri6t6s de l'alg6bre 

24 
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6tudi6e sont, en quelque sorte, analogues & ceux de l'alg~bre pseudodiff6rentiel 

de Kohn et Nirenberg [5] et de H/Jrmander [4]. Toutefois, il y a lieu de remarquer 

que le caract~re discret et non-local des op6rateurs aux diff6rences finies, l'utili- 

sation des espaces de fonctions de maille et la pr6sence d'un petit param~tre (le 

pas du r6seau) font que l'6tude dans le cas discret diff~re sensiblement du cas 

pseudodiff6rentiel. En 6tablissant les formules de commutation et celles pour 

le symbole de l'op6rateur conjugu6, ainsi que l'analogue discret de l'inggalit6 

de Ghrding, les estimations des normes des op6rateurs--restes sont donn6es ~t 

partir des symboles des op6rateurs correspondants. Une alg~bre des op6rateurs 

aux diff6rences finies d'ordre 0 darts L 2 a 6t6 introduite darts l'article [9]. Cette 

alg~bre avait un caractbre sp6cial et 6tait essentiellement adapt6e ~t l'6tude des 

syst~mes diff6rentiels hyperboliques du premier ordre. 

Les op6rateurs aux diff6rences finies 6tudi6s darts [6] et trait6s de mani~re 

plus simple dans [3], [8] n'6taient autres, en substance, que des approximations 

de l'uait6. De tels op6rateurs dits op6rateurs de passage d'une valeur temporelle 

/ t u n e  autre, ou, encore, op6rateurs d'amplification, apparalssent lorsqu'on 

discr6tise les probl~mes diff6rentiels avec les donn6es initiales. 

L'alg~bre introJuite dans [1] et ci-dessous a pour objectif principal le d6ve- 

loppement de la th6orie elliptique des op6rateurs aux diff6rences finies. 

On va exposer bri~vement le contenu de l'article. Les notations n6cessaires 

sont donn6es dans le §1. On introduit dans le §2 les classes des symboles matriciels 

et l'on d6finit ensuite, darts le §3, en partant de ces symboles, les familles uni- 

param~triques des op6rateurs aux diff6rences finies. Dans ce m~me §3, on d6- 

montre que ces familles sont uniform6ment born6es (par rapport au param~tre) 

° c (Rx) .  o n  en tant qu'op$rateurs de Co (R~) dans ~ n d~finit dans le §4 l'ordre 

d'un op~rateur aux differences finies et l'on d6montre qu'un tel op6rateur est 

born6 dans les espaces des fonctions de maille Hs(0, ho) correspondants (cf [2]). 

Darts le §5 on ~tablit l'analogue discret du th~or~me du noyau et l'on en d~duit 

quelques cons6quences utiles. Le §6 est consacr~ ~ l'~tude des formules de com- 

mutation pour Ies op6rateurs aux diff6rences finies. Dans le §7, on dtablit des 

formules analogues pour le symbole de l'op6rateur conjugu$. Finalement, on 

d~montre dans le §8 l'analogue discret de l'in6galit6 de Ghrding, en utilisant 

l'6chelle des espaces Hs(0, h0) des fonctions de "maille". On ne fait aucune sup- 

position sur l'approximation, en particulier, les r6sultats restent vatables pour 

les op~rateurs auxdiff~rences finies approximant des op6rateurs pseudodiff~rentieIs. 
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1. Notations 

Comme d'habitude, on note par R~" l'espace euclidien r6el de dimension n 
n n 

et par R~ l'espace dual des formes lin6aires sur Rx. Puis on d6signe R~+ = {t ~ R l 

It > 0}. On note par R~.h une famille uniparam6trique de r6seaux duns R~de  

pus hj = rjh en x~; pour tout h, 0 < h < ho, le r6seau R"~.h contenant l'origine; 

ici r j ,  1 < j < n sont des constantes positives. On d6signe par T¢."a la famille 

uniparam6trique des tores duals ~t Rn, h, T" = ¢,h (¢ ~ Re, I hJCJl< re}; au lieu de 

T¢" 1 on 6crira T¢ ~. On r6serve la notation usuelle ?7" pour l 'anneau des n-uples 

dont les coordonn6es sont des nombres entiers, tandis que ;eft d6signe l'en- 

semble des n-uples de 7/" dont les coordonn~.es sont non-n'gatives; on appelle 

les 616ments de Z~_ multiindex. Puis on pose (¢ = { (~ , ' " , (e .} ,  (:j = (ihj) - I  

(exp(ihj~j) - 1) et l 'on note c0¢ le vecteur aux coordonn6es complexes qui s'obtient 

de (~, lorsque h = 1. Pour tout ~ de l'espace complexe C" de dimension n on 

pose: ( ( ) s  = (1 + 1(12) s/2. Pour toute fonction de maille u(x) bL valeurs darts g p 

on note par ~h(~) sa transform6e de Fourier discrbte. Si u(x) est une fonction 

d'argument continue, on note, comme d'habitude par ~(~) sa transform6e de 

Fourrier int6grale. Nous d6signons 6galement par Fx-~¢,h et F~_,¢ respectivement 

les op6rateurs de la transform6e de Fourrier discrete et int6grale, les op6rateurs 
- 1  - 1  inverses 6tant d6sign6s respectivement par Fg.x, he t  F¢_.~. On pose: 

(1.1) (u,v) h = ~, u(x)v(x--~)hl.., h, 
X ~ Rxn,h 

On conserve les notations usuelles C oo et Co pour l'ensemble des fonctions 

ind6finiment diff6rentiables et celui des fonctions ind6finiement diff6rentiables 

~t support compact. En ce qui conzerne la d6finition et les propri6t6s des espaces 

de fonctions de maille C~(0, h0) et H~(0, ho) , nous renvoyons le lecteur ~t l'article 

[2]. On 6crit C k et Hs tout court lorsqu'il n 'y a pus le danger de confondre 

ces espaces de fonctions de maille avec les espaees classiques correspondant des 

fonctions d'argument continu. Posons, ensuite 

C°°(O, ho) = 0 ck( O' ho)' Hoo(O, ho) = ~ H~(O, ho) 
k = 0  S 

On note par ~(W1, WL) l'ensemble des op6rateurs lin6aires contirtus de l'espace 

de Banach W1, dans l'espace de Banach 1412. 

Soit a(x,~) une fonction sur R~ × R~ b, valeurs dans l'espace des matrices 

carr6es d'ordre p. Pour tout couple ~,fl~Z~_ on pose 
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a~(x, ~) = D ~ ; a ( x ,  ~) 

off O~ = D ~ . . . D ~ ,  O~j = - i~2 . ,  ~3~ = ~¢. . .  ~ 0~',~ a~ et 0¢j 6tant respectivement 

les d6riv6es premi6res par rapport / t  xj et ~i; parfois, on 6crira a(_~)~e~ au lieu 

de a~(x, O .  
Puis on d6signe 

a<x>j¢~,(x, ~) --- (1 + [t3~ 12)jlzO~ea(x, ~), 

off ctEZ~+, j E Z ~ ,  et l'op6rateur pseudodiff6rentiel (1 +]  ~12) q~ est d6fini de 

fa9on usuelle. 

Posons e n c o r e :  Dx,  h = ( D x l , h l ' . . D x , . h . )  , ff)x,h "~" ( f f ) x l , x l " ' f f ) x n h . )  OU Oxj, h et 

/)~j,a sont des op'rateurs de diff6rences finies premihres respectivement en avant 

et en arrihre, multipli6es par - i. On note par 

o~,~ = (o~.~,.- . ,  o~o,~o), ~ , ~  = ( ~  h,,'", o~o ~o) 

les op6rateurs de translations de pas (lh, "", h,) respectivement en avant et en 

arri~re. I1 est clair que les identit6s suivantes sont valables: 

O~j,h~ = 1 + ih.iDx~,h , ~)s~.hj = 1 -- ihj[)x~.h ~ 

0~, SOUS la forme vectorielle 

®~.h = 1 + ihD~,h, ~)x,h = 1 - ihff)x, h 

Ctl ~rl Puis, comme d'habitude, pour tout e eZ~_, on pose Dx,  h = Oxl ,hl  "'" Dx.,h,, et de 

mSme pour tousles autres op6rateurs ddfinis sur le rdseau. On d6signe par ta(x, ~_) 

la matrice conjugude de a(x, 4). Puis on r6serve la notation a~(X, ~) pour la trans- 

form6e de Fourrier discrete de a~(x,~) par rapport h la premiere variable, la 

variable X 6tant duale de la variable x. Quelquefois on 6crira 6galement ~h 

Respectivement a~(x,~) est la transform~e de Fourrier int6grale de a~(x,~) 

par rapport & la variable x. On note par [a(~, ¢)1, ou par l a ] tout court la norme 

de la matrice a(x ,O .  

Soit ¢(t) e C  ~ p o u r t = > 0 e t 0 < ¢ ( t ) <  1 , ¢ ( t ) = 0 p o u r 0 < t < 8 , ¢ ( t ) =  1 

pour t > 28. Posons 

(1.2) ¢~ = ¢(1¢~1). 
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2. Classes des symboles quasihomog6nes Kv. Classes des symboles -£¢v. Symboles 

gradu6s 

Classes K,. 

Soit a(x,Q, une fonction sur R~" x R~ & valeurs dans l 'espace des matrices 

carr6es d 'ordre  p ,  qui d6pendent p6riodiquement de { avec les p6riodes 

(2n/rl,...,2n/r,). Le rtombre v 6tant r6el, on d6finit pour tout  j e g+l et tout 

c~g~_ les normes 

P 
(2.1) [I -h Jr a<x,,g.[]l~l_ ~ = (2n)-"Sup . S u p < ~ x . > j l  ~h , , jz, OI I~,~1 I~j-~ dz 

h z ,h 

et les normes 

2.2) tl a<-,:~ll~-~ = (2~)-~f~ sup <zyla :&,¢) l l~l~l- 'dx 

Par d6finition, la classe K~, v ~ R ~ , est compos6e de toutes les fonctiorts ~ valeurs 

matricielles a(x, 4) qui v6rifient les conditions 

(2.3) ][ a<x)j~,[ll=l_,, < oo, V(j, 0¢) egt+ x g~, 

en outre la fonction a(x, ~) est dite symbole canonique ou quasihomog~rte d 'ordre  

v. On note par ord a l 'ordre v du symbole a.  

Symbole graduC 
Soit {sj}j°°=o une suite de nombres r~els, en outre, on suppose que sj 4 - m .  

On appelle symbole gradu6 et l 'on note par ar(a) la s6rie formelle 

(2.4) at(a)  = ZJa(x,Q, "ia(x,{)eK,j. 
j>o 

Classes . 9 , .  

Soit a(h, x, ~), (x, ~.) ~ Rx" x R~, h ~_ (0, h0) urte fonction & valeurs darts 

l 'espace des matrices carr6es d 'ordre  p ,  a d@endant contirtument de (h,x,{) 
et 6tant pour tout h e (0, h0), une fortction incl6finiment diff~rentiable de (x, Q; 

on suppose, en outre que a est p6riodique en ~ avec les p6riodes (2n/hi, .--, 2n/h,), 
hj = rjh. 

On d6finit pour ces fonctions matricielles les normes 

(2.5) ] a<x>'¢'l I,I-v = (2n)-" f p  sup (Z>J ] a¢=(h, Z, ¢)1 (~¢) t ' l - 'dZ,  
z h,¢ 
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f~i.  sup (~x> "/ 
( 2 . 5 ) '  _h = [a<x>'¢=] I=1-~ l <¢¢>1~1-~dz 

veR*, jeZ*+, ee2+. 

On d6finit la classe £0  des fonctions matricielles a(h, x, ~) ayant les propri6t6s 

ci-dessus et v4rifiant la condition: il existe un symbole gradu6 

ar(a ) = £ k a ( x , { ) ,  haeK,~ ,  So = v 
k = O  

tel que les in6galit6s suivantes soient vdrifies: 
r ~ J  

(2.6) I Nr<~>'¢'[I=i-*,, < oo, V(j, G N ) s Z +  1 x 77+ xZ+*, 

les Nr = Nr(h,x,~) dans (2.6) d6signant les restes: 

~ Nr(h, x, ~) = a(h, x, ~) - 4~¢ ~, h - ~  ka(x, hi),  n >- 1 
(2.7) o~_k<~ - 

~-°r(h, x, ~) a(h, x, 4). 

La fonction matricielle a(h, x, ~) est dite symbole. 

TH~OI~ME 2.1. Soit un symbole gradu&rr(a ) = ~ k_>_0 k(x ,{) ,  avec ka s K,  k, 

So = v. l l  existe un symbole a (h ,x ,~ )~  ~ ayant ar(a) pour symbole gradud. 

D~MOSST~ATION. Soient ¢(t) la m~me fonction que dans (1.2) et {tk}~°=o une 

suite de nombres r6els tel que tk ,L O. Avec les notations 

(2.8) k b(h, x, ~) = 4)(tk I ~¢ 1) h-*~ ka(x' h{) 

on pose 

(2.9) a(h,x ,~)  = Y~ kb(h,x,{).  
k > O  

Pour tout h fixe, h e(O, ho), et pour tout couple (x,¢)eR"~ x R~ il n'y 

a dans la somme (2.9) qu 'un hombre fini de termes qui ne disparaissent pas. 

Mettons to = 1 et choississons tk, k >= 1, de mani6re que soient v6rifi6es les 

in6galit6s 

(2.10) < 2-k '  J + I=1 =< k. 

On va utiliser la formule de Leibnitz pour estimer le terme 

(2.11) kb<~>q= = (x> Ja~[c>(tkl ¢¢J)h -*~ t a (z ,h{)] .  

I1 est facile de voir que les termes du second membre de (2.11) ne contenant les 

d6riv6es de qS, peuvent etre majordes 
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(2.12) [ q~(tk[ ¢el)h T M  ka<~>J4-lI<-sk_, ----< 

=< c sup II,=,-,k. 

Puis, vu que ¢(t~lCe[) = o pour tkI(e[ --< 6, on a 

c~(t k [(~I)[ ~ I sn-I~l<(g> Dl-sk-, ~ C, tk~-~-~k 

de sorte que l'expression dans le second membre de (2.12) peut ~tre majorde par 

(2.13) CjSk k ,-~kl] ka<x>j~" ][I,I-sk" 

Les terrnes dans le second membre de (2.11) contenant les d6riv6es d 'ordre q 

de la fonction q~, poss~dent 6galement le faeteur t~; compte tenu du fait que 

dans le support des d6riv6es de q5 on a: t k "~ ](¢1-1 , on arrive imm6diatement 

la conclusion que les termes en question sont born6s sup6rieurement par une 

majorante du type (2.13). Ainsi, on a montr6 que 

8k--l--$k ~<x>j~ [][3]-.~k " 

Posant 

mk = sup C,H ka<x>je[[l,l_,,, 
j+[~l<k 

et choisissant tk de mani~re que l 'on ait 

tk -< (m~ -1 2 -k) (s~-,-sk)-, 

on obtient finalement les in6galit& voulues (2.10). 

O n  v6rifie ais6ment que la fonction a(h, x, 4) d6finie par la formule (2.9) satis- 

fait les conditions (2.6). Le th6or~me 2.1 est d6montr6. 

3. D6finition d'un op6rateur aux diff6renees finies (o.d.f.) par le symbole. 

Relation avec le symbole gradu6 

Soit une fonction matricielle a(h,x, 4)e £~v. On d6finit pour toute fonction 

u(x)eCo(R"~) gi valeurs darts R p, une famille d'op6rateurs aux diff6rences 

finies A n , O < h < ho: 

(3.1) Ahu = F~_.lx.ha(h,x,~)Vx_.¢ hU + T~u. 

Ici et darts tout ce qui suit, on r&erve la notation T~ pour une famille uni- 
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param6trique d'op6rateurs jouissant de la propri6t6 suivante: l'image de Hs(0 , ho) 

par 7~ appartient /t l'espace H®(0, ho), quelque soit s ~ R 1 . 

Quelquefois on usera de la notation a(h, x, D) pour d6signer une famille A h des 

o.d.f. 

On appelle symbole d'une famille A net l 'on note a(A ~) la fonction matricielle 

a(h,x,4) intervenant darts le second membre de la formule (3.1); le symbole 

gradu6 crr(a ) est dit 6galement symbole gradu6 de la farnille A h et not6 dans ce 

cas ar(Ah) • 

T~I~.O~,f~MZ 3.1. Soit a ~ L~' v. Alors la famil le  des opdrateurs: 

(3.2) Ah: Cg--, C ®, 

est uniformdment bornde par rapport d h E (0, ho). 

D~MONSTI~TION. Vue la formule de Poisson (cf. I-2]) 

(3.2)' fih(~) = ~ u(¢ + 2rcyr-Xh-~), 
7 ~  n 

off r = (rl, "", r,), vr -1 = (~,1rl 1, . . . ,y ,r~l) ,  et compte tenu de la p6rioSicit6 

de la fonction a(h, x, 4) en 4, il vient imm6diatement: 

Ahu = F~a(h,x,~)F~_.eu = (2re) --~ I_ ei~'¢a(h'x'~)u(~)d~ (3.3) 
~ R  

Vu ~ Co(R:). 
La fonction ~(~) d~croissant rapidement et la fonction a(h,x,~) 6tant une 

fonction de la classe C °o en x, la possibilit6 de diff6rencier sous le signe d'intd- 

grale dans le second membre de (3.3) ne suscite pas de doute. Appliquant la 

formule de Leibnitz, ainsi que multipliant et divisant par (~¢)v, il vient, 

O~(A u) (2re)-" X i:,g = .JR e aa(h,x, 4) (.~¢)-'(i4)" -# (~¢)'~(~)d4. 

Maintenant pour d6montrer le th6or~me il suffit de noter que 

sup ]aa(h,x,¢)l( fe)  -~ __< l a . . l _ , ,  J = l a l ,  
h,x,~ 

et que 

(.~) =< (4>. 

Le th6or~me 3.1. est d6montr6. 

Le th6orbme suivant 6tablit le rapport entre l'op6rateur aux diff6rences finie A h 

de symbole a(h,x,¢) et le symbole gradu6 ar(a ) = Y~k>=oka(x,~). 
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THt~ORI3ME 3.2. Soit A h une fami l le  de o.d.f, de symbole a(h,x,~) et soit 

ar(a) = Zk>=O a(x,~) le symbole 9radu6 de a(h,x,~).  Alors on a la formule  

asymptotique: 

h M - ~  
(3.4) ]~ - -  kaY(x, tl)D~,f , e x p ( -  ih- ax.tl) Ah(exp(ih - ax.q)f) = 

(h ---, O) 

t/~ T~" \ (0}, f ~  C~(R]). 

DI~MONSTRATION. La d6finition (3.1) et l'identit6 (3.3) donnent: 

ih - i x.tl)ah(exp( ih - I x.tl) f ) = (2n)- ".IR~_ exp(ix.(~ - h- aq) )a(h,x,{)f(¢ - h - atl ) exp( 

d~ 

= (2n)-n fR~ exp(ix.~))a(h, x, ~ + h-aq)f(~)d¢.  

On va utiliser la formule de Taylor 

a(h,x,~ + h-an) = ]~ l a ' ( h , x , h - l q ) ~ ' +  QN(h,x,~,rl). 
I~I<N • 

Vue la d6firfition (1.2) de la fonction ~b~, on a pour h suffisemment petit ~bh-, . = 1, 

ce qui donne imm6diatement dans ce cas 

(3.5) hS ' -N]  d ' (h ,x ,h-aq)  - ~ h -~" ka'(x,q)] < 
O~_k<M 

= re, I~1-~,~, V M >  1, V a ~ Z ~ . ,  

les fonctions Mr¢, 6tant d6finies par les formules (2.7). 

Les in6galit6s (2.6) et (3.5) permettent d'6crire l'6galit6 asymptotique 

(3.6) a~(h,x,h-a~l) = ]~ h -s"+l~l kd'(x,q) (h ~ 0). 
k>O 

I1 reste, pour achever la d6monstration du th6or~me (3.2) A estimer la quantit6 

1 a"f""~ a ' (h 'x 'h-at l  +p~)~'exp(ix  ~)f(~)d~. QN= 2 ~ 
I~1 =N 

Posant E h -- ( ~ R ~ : h l ~  [ < 2-aI~/l} et notant que 

sup l a~(h,x,h-Xrl + P~)I = sup ((h-ln+p~)~-NltT¢,l N_~ < ChN-~l~l~_~, 
~eEh ~eEh 

ainsi clue 
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sup ]a~(h,x,®)] < I ~ - I ~ - v ,  I~l = N 
h ,xO 

on est conduit ~ la conclusion que le reste est born6 sup6rieurement par la quantit6 

(3.7) C <¢>"lf(¢)ld¢ + 

1" 
+ j <¢> NI:(¢) I a¢. 

t'l¢l--> 2-  J 171 

La fonction f appartenant ~t Co(R~), la seconde int6grale dans (3.7) d6croit plus 

rapidement que h J, quelque soit j .  Cela ach~ve la d6monstration du th6or~me 

3.2. 

En r6alit6, on a d6rnontr6 un peu plus. Notamment,  on a d6montr6 que 

hill -sk 
k g:X "D ~ f e x p ( -  ih-  lx.tl)Ah(exp(ih - 1 x ' t l ) f )  - ~, a ( , t l )  ~ = O(h s -  ~ + hS,~) 

I~I<N.k<M ~! 
lorsque h ~ 0 

uniform6ment par rapport  ~t x E R~ et pour tou te r (x )  appartenant A un ensemble 

born6 darts Co(R~).  

En tant que cons6quence du th6or~me 3.2, on obtient le r6sultat suivant: 

TH~ORi~ME 3.3. Le symbole gradud d'une fami l le  de o.d.f. A hes t  ddfini de 

fa fon  unique. 

DI~MONSTK&TION. En effet, soient a(~)(a) = ~, k>=O ka(l) et  a(2)(a) = ~ k=<0 ka(2) 

deux symboles gradu6s de la famille A h. Vue la formule (3.4), il vient imm6diate- 

ment 

ord kO)  _-- ord ka~2), ka(1) =ka(2), l¢ ?~ O . 

4. Ordre d'un op6rateur aux differences finies. Th6or~me de continuit6 dans ies 

espaces Hs (0, ho) 

Soit une famille A h = a(h, x, Dx) de o.d.f, de symbole a(h, x, 4)~ ~q'v. Si pour 

tout It < v on a: a(h,x,~)q~LP~, alors le nombre v e s t  dit ordre de Ia famille 

A h. On 6crira darts ce cas 

ordA h = v .  

TH~OR~ME 4.1. Soit une fami l le  A h e t  ordA h = v. Alors l'opdrateur 

A h  ~ n Co (Rx) C~(R~) 
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peut (tre prolongd comme opdrateur lindaire continue de H~+v dans Hs pour 

tout s e R  1. En outre modulo l'op&ateur T~, les estimations suivantes sont 

vra ies 

(4.1) [IAhl{~z .... -,n. < 2Jsll a<x>lql-v 

DI~MONSTRATION. Etant donn6 que Co~(R~)" est dense dans Hs(0, ho), Vs e R ~ 

(cf [9]), il suffit de ddmontrer l'in6galit6 

(4.2) IIa u ][s h =< cllulls+ h, YucCa(R:), 
avec une constante C ind6pendante de h et u.  

I1 est facile de v6rifier que pour une famille A h de simbole a(h, x, 4) la repr6- 

sentation suivante est valable (modulo T~) 

f (4.3) (Ahu)h(~) = (2~) -" r "  ah(h' ~ - q '  q)ah(q)dq 

Posant 
s ~ ' h  7h(q) = <(¢>,+~fih(q), #n(~) = <(¢> (A u) (~), 

on obtient une famille d'op6rateurs aux diff6rences finies 

kh(~) = (2Z0-. f t .  h <(¢> ~gth(h, ~ _ q, q) <~,>-(~ + ~)gh(q)dtl ' 

h dont la norme dans LL(T~",,) coincide avec [1A Iln ..... , - ,n, , , .  

Le lemme de Schur bien connu permet  de r6duire l 'estimation de la norme 

11 l '6valuation des expressions 

(4.4) f s u p  fr".~ sup <~¢)~1 ah(h,~-r/ ,q)l  <(~ )-(s+v)d~ 

On va avoir besoin d 'une  variante du lemme de Peetre. 

LEMM1a 4.1. Quleque soit s e R  1, les ind#alitds suivantes sont vraies: 

(4.5) <~)~<( , ) - '  < 21'l<ff~-,? I~1 • 

D~raONSTZ~TtON I~U LF~MME 4.1. L'in6galit6 de Peetre classique (of. [51), donne 

<~> <~.> - '  ___< 2 ~ < ~ -  ~.> J~. 

Apr~s un calcul 61dmentaire, on obtient 

<¢~ - ¢ . >  = <¢~_.>. 
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ce qui prouve le lemme 4.1. 

Appliquant (4.5) on obtient pour les expressions (4.4) la majorante 

S r ' ~ h  1 

La<~> ~lJ-v • 

Maintenant pour obtenir l'in6galit6 (4,1), il suffit de montrer que 

(4.7) -h [a<~>pl]-v --< [ a<~>l-l]-, • 
Cette derni~re in6galit6 est le r~sultat imm6diat de la formule de Poisson (cf. [2]), 

qui 6tablit le rapport entre la transform~e de Fourrier discrete et int6grale. 

5. Th6or6me sur le noyau d'une famille de o. d. f. de symbole gradu6 nul 

Dans ce paragraphe on va 6tudier la structure d'une famille A h d'op6rateurs 

aux diff6rences fines dont le symbole gradu6 Or(a ) est identiquement nul. 

Ta~OR~M~. 5.1. Soit une famiIle A h de o.d.f, de symbole a(h,x,~) dont le 

symbole gradud trr(a ) s'annulle identiquement 

(5.1) ~ ( a )  = 0 .  

Alors la famille A h admet la reprdsentation: 

(5.2) (Ahu)(x) = ~, K(h,x,y)u(y)ht. . .  hn, u sC~(R2), 
ye Rn.h 

la familIe de fonctions K(h,x ,y) ,  h E(O, ho), dans le second membre de (5.2) 

dtant ddfinie pour tout couple (x, y) ~ R] x R~) et appartenant d u n  ensemble 

bornd dans C°°(R~ × R~). 

DI~MONSTRATION. Posons 

(5.3) K(h, x, y) = (27r) -~ f r ~  exp(i(x - y, ~))a(h, x, ~)d~. 

La transform6e de Fourrier discrete, tout comme darts le cas continue, faisant 

correspondre gt Ia convolution discr6te de deux fonctions de maille, le produit 

de leurs images de Fourrier discr~tes, on obtient imm6diatement Ia formule (5.2) 

avec le noyau K(h, x, y) d6fini par la formule (5.3). I1 reste ~ d6montrer que la 
n famille de fonctions (5.3) appartient h un ensemble born6 dans C°~(R~ × Ry). 

Ceci s'ensuit imm6diatement des in6galit6s (2.6). En effet, sous les hypotheses 

du th6or6me, l'in6galit6 (2.6) avec ~ = 0 donne: 

(5.4) oo, 

Puis, pour tout [ ~1 = j on a: 
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ID,'K(h,x,y)l < (2tO-" ( l~ ' l la(h,x,~)ld~ < jr;  = 

( ( ~ ) - ( . + i )  x) ia(h,x,O ] ((e).+j+l <_ C jr2, h ~ ] a(h,x,()} ((¢)("+J+ d~< C a sup¢ 

Maintenant, vue l'in6galit6 6vidente 

la(h ,x ,  I 
et l'in6galit6 (5.4) avec j = 0, nous sommes conduit / t  la conclusion que 

sup ID,~K(h,x,y)l < oo, Vc~EZ~_. 
h,x,y 

On d~montre de fa~on analogue les in6galitds 

I " '  )1 (5.5) sup DyDxK(h,x,y < oo, V(c~,fl)eT]~. x 77+, 
h.x.y 

utilisant darts ce cas les in6galit& (5.4) avec j __< I ~1" 

Le th6or~me 5.1 est d6montr6. 

Comme une cons6quence simple d u tMor~me 5.1, on obtient le r&ultat suivant: 

TH~O~&ME 5.2. Une famille A h d'opdrateurs aux diffdrenees finies est bien 

ddfinie par son symbole 9radu~ ~r(a) modulo un opdrateur 7~ ,  ce dernier 

appliquant tout espace H~(0, h0) dans C°°(0,h0). 

D~MONSTRATION. Soient A~ et A2 h deux families de o.d.f, ayant ~rr(a ) pour 

symbOe gradu& La diff6rence A~ - A~ = R hen vertu du tMor~me 5.1 peut ~tre 

raise sous la forme (5.2). Les propri6t& du noyau K(h,x,y) dans (5.2) 6tablies 

par le tMorbme pr6c6dent, garantissent la continuit6 de l'application: 

Rh: g~(o, ho) ~ C°°(O, ho) 

quelque soit s ~ R ~ . 

6. Composition de families de o.d.f. 

On va montrer dans ce paragraphe que la composition de deux familles de 

o.d.f, est encore une famille de o.d.f, et on va expliciter la formule pour le symbole 

et symbole gradu6 d'une composition par les symboles et symboles gradu6s des 

families donn&s initialement. On va ennoncer le rdsultat: 

THI~OR~ME 6.1. Soient deux familles de o.d.f. A het B h d'ordres respective- 

ment vet  pe t  de symboles a(h,x,~) et b(h,x,O. Alors la composition Ah o B h 
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est une famil le  de o.d.f, d" ordre v + I~ qui pour tout N ~ 7/1+ , N > 1, peut dtre 

raise sous la forme 

(6.1) Aho B h = ~ C~. + R~, 
O < j ~ N - 1  

oft les familles de o.d.f. C~ sont d'ordre v + I t - j  et ont pour symbole les 

fonctions matricielles 

(6.2) c j (h , x ,~ )=  ~ la~(h ,x ,~)b~(h ,x ,~) ,  
I~l =J 

en outre, la famille de o.d.f. R~ est continue de H,(O, ho) dans H~-~-u+N pour 

tout s~ R 1, l'estimation suivante dtant vdrifide pour Rhs; 

(6.3) __< 

I~I_-<N 

La constante C(s,v, Ft, N, n) dans le second membre de (6.3) ddpend seulement 

des parametres s, v, It, N, n. 

Pour le symbole gradud ax(a <3 b) de la composition A h © B h la formule suivante 

est vdrifide: 

(6.4) ar(aO b) = E lo~¢Ja(x,~)O:kb(x,Q, 
j , k , a  " 

{X' 

ici on a notg par ar(a ) et ar(b ) respectivement les symboles 9raduds de A s 

et de B h , 

(6.5) ar(a ) = ~ J a ( x , ~ ) ,  ordJa = s  i ,  
j > o  

ar(b) = ~ k b ( x ,  ~) ,  ord kb : r k ,  
k>0 

~ j  ~k en outre, l'ordre de a¢( a(x,~)D x b(x,~)) dtant: 

a j  a k  (6.6) ord (0¢(a(x,~)D x b(x,~)) = sj + r k -  l a[ . 

DI~MONSTRATION. Utilisant la mise en forme (4.3) d 'une famille de o.d.f, et le 

thSor~me de Fubini, il vient 

(6.7) ~h(~) = Fx_~¢,h([A n o Sh]u) = 

L*JT~,h 

Appliquant la formule de Taylor ~t fib(h, X, rl), en tant que fonction de r/, avec le 
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point T pour centre; d6signant par R, h le reste de la formule de Taylor mis sous 

la forme de Lagrange et posant 

(6.8) 

on obtient 

rv,"-"~", Z, z) •-h ~h z b (h , z , z )  - = b~(h, Z, z) 

(6.9) ~h(O = ] E l  Ir f i r  . a~" I=I_~N_I ~-~.~ (2~)-n . f i n ( z )  h(h,~--q,z) 
, d  ~Jh  L ~  r l ,h  

b~(h, q - z, z)dq ] dz 

i~l _<N_), r~,. L aV.,h 

r (h,q-z ,z)dt  I dz + 

~ n 

Notant que 

. a (h,~-tl, z)l)~(q,~-z,z)dq = Fx_,~_~.h(a~(h,x,z)b~(h,x,z)) 
,h 

on obtient, compte tenu de (6.2), que la premiere somme dans (6.9) soit pr~cis~- 

ment 

(6.10) Fx-,~,h ( ° ]~ C~u ) .  
~_j~_N-1 

Ainsi, il reste, pour d6montrer la premiere partie du th~or~me, ~t estimer la se- 

conzle somme et le dernier terme dans le second membre de (6.9). L'estimation 

voulue r6sultera des trois lemmes suivants. 

LEMME 6.1. Soient deux noyaux Kj(h ,z , z ) , j  = 1,2, 0 < h < ho, (X,z)~ 

T;e~n X T,,h, v&ifiant les conditions: 

[Kj] = SUPh J'zfT",~ supl Kj(h, X, z) I dz < m ; 

on pose 

K(h, ~ - z ,  z) = f r~, h Kx(h, ~ -q,  ® ,)K2(h, ~/-z, z)dq 
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avee ®. = z + q01--z), 0 < q < 1, (z, rl)~T~,h × T. ~ 

Alors la famille uniparam6trique d'opdrateurs K h, 

39 

f .  

(Khg) (~) = Jr . ,  K(h, ~ - z, z)g(z)dz 

est bornd dans L2(T~,h) uniformdment par rapport au paramdtre h; en outre, 

(6.11) sup][ < [K, ]  l-K2] 
h 

LEMME 6.2. "P~, t~l < N - l ,  ~tant ddfini par la formule (6.8) et 

q = 1 N - v t  + l s - l z l ,  on pose 

a h 
(6.12) "P(h,~,r) = ,, ( ~ j - ~ - , + N  h,~ -n,~) .r  (h, r t -z ,O(~, ) - 'dr l .  

J Tn,h 

Alors la famille d'opdrateurs intdgraux ,ph ayant les fonctions (6.12) pOUr 

noyaux, est uniformdment born& dans Z2(Z¢~.h); en outre 

(6.13) [t'Ph[[L2_~L2 < C I 6<x>,~.ll,l_vtb<~>,+ul _, 

la eonstante C dans le seeonde membre de (6.13) ne dependant que de N,s, v,l~,~l. 

L~MME 6.3. _~ dtant le reste darts la formule de Taylor dans (6.9) et le 

nombre q 6tant le m~me que dans l'dnoncd du lemme 6.2, on pose: 

(6.14) Pu(h,~,z) = . ((~)s-v-u+N~hRiv(h,~-11,rl, z)~h(h, rl- 'C,z)(~-Sdrl 
.lr,,h 

AIors Ia famille P~ d'opdrateurs intdgraux ayant les fonctions (6.14) pour 

noyaux, est uniformdment bornde dans LL(T~",h); en outre, avec une constante 

ne ddpendant que de v, It, s, N, n l'ind#alitd est vdrifide 

(6.15) I] Phu IIL2-'L2 < C ]~ I a<~>~¢"ll~l-vl E,<:,>~+rc[_~, 
[~[ =<N 

Utilisant le lemme 6.2 et le lemme 6.3 pour  estimer respectivement la seconde 

somme et le reste dans le second membre de (6.9), nous obtenons imm6diatement,  

compte tenu de (6.10), la repr6sentation (6.1), (6.2) et l 'estimation (6.3). Notons 

par ar(a o b) le symbole gradu6 dans le second membre de (6.4). Le th6or~me 

2.1 permet  d'affirmer qu'il existe un symbole e(h,x, OEAe~+,, ayant ar(ao b) 

pour  symbole gradu6. Cela 6rant et compte tenu des relations (6.1)-(6.4), il est 

facile de v6rifier la formule 
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A ho B h = C h + 7~, 

ici C hest la famille des o.d.f, ayant c(h, x, 4) pour symbole. 

En effet, vus (6.1)-(6.4), un calcul facile donne 

ar(AhoB h - C  h) = 0 

Compte tenu du tMor6me 5.1., on a 

Ah o B h - C h = T~ • 

II reste it d~montrer le lemme 6.1. qui sera ensuite utilis6 pour la d6monstration 
des lemmes 6.2 et 6.3. 

D~MONSTRATION DU LEMStE 6.1. Vu le lemme de Schur, il suffit de v6rifier 

les in6galit6s 

(6.16) sup Q ,  IK(h ,~-z , r ) l  d~ < [KI] [K2] 
h,lr ~ h  

et 

(6.17) sup .J'J;",hK(h' ¢--% r) l dr _-< [Kx] [Kz] • 
h,~j 

On va commencer par (6.16), On a 

~u~,,. KI de < SUPh.~ --fr",.nolr",.,IKl(h'~-rl'O')l I Kz(h'rl-r 'r)ldrld¢ 

~ SUPh..t f2L J /2(h:J ~-'~" T)I [fTn'h ]Kl(h'~-~'~t)ld~] d~ 

Puis, on a: 

sup f r  ]Kldz  <suprr"~ It" ~., . -~., ~... ,- ,]GCh,~-q,O,)llKzCh, q-~,r)l dq&" 

= [ K , ]  [K2] ,  

ce qui prouve (6.17). 

D~MONSTP, ATION DU LEMMe 6.2. L'in6galit6 de Peetre donne: 

]=e(h,~,~)] <= 4qfL. <¢¢_v>q~ '~ h(h,¢--q,z)<~>l~l-v<~q-,>. 
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h 
Kx(h,z ,z )  = <~,> ql a~ (h,z,z)[ <(~>1,1-, 

Re(h, Z, z) -- <¢x>q I *rh(h, Z, z) I <(,>N-u-I~I , 

6.1 on obtient pour la famille d'op6rateurs ~ph 

I[ aPh [[g2-~L2 <= 4q[l( l ]q[K2] • 

Puis, compte tenu de (2.5) et (4.7), il vient 

(6.18) [K1] < ] ~<x>~/l~l_ v. 

Pour d6montrer le lemme 6.2 il reste a obtenir l'estimation 

(6.19) [K2] =< C] b<x>q+N[_ u . 

Utilisant la formule de Poisson, qui etablit le rapport entre les transform6es 

de Fourrier integrale et discr&e, on peut 6crire: 

a ~ h  , ,1  tn,Lz)  = ~, [ f f  - ( X  + 2rc?r-lh-')~]b(h,z + 2 n ? r - l h - l , z ) .  
O-i~,l e 7Z'* 

Notant que 

s u p  [ f i -  
x ~. T z , h  

on obtient 

I )l r (h, Z, z <= C(c~, k)h k- I~1 

de sorte que 

(Z + 2rc?r-lh-1)~ l <Z + 27r?r-ah-l> -k < c(e,k)h k-M , Vkmzl+, 

Z 
ats~, • Z n 

<X + 2z7r- 'h- l>k I b(h, Z + 2rcyr- 'h- l , z ) l ,  

Vk eZl+ 

Posant k = N et notant que 

hN-f,I <(~>N-,,I < c(N, n, ho) (0 < h _-< ho), 

[K2] <= c&,k)h ~-N "~m"Z frz, 5#x>~<Z + 2rc?r-'h-'>k. 

Ib(h,Z + 2 ~ r - ' h - ' , , ) [ < ( , >  N-"-I~l dz =< 

< c(a'k)hk-Nfo )~q+"l D(h,z,z)[<(,>N-"-Ndz. 
= j , .  
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la constante c(N, n, h0) ne d6pendant que de N, n et h0, on obtient l'in6galit6 

(6.19) avec une constante c ne d6pendant que de N,  n et ho. Le lemme 6.2. est 

d6montr6. 

D~MONSrR~TmN DO LEMMF. 6.3. On va avoir besoin de l'expression explicite 
~ h  pour RN: 

N 

~ ( h , z ,  rl, z ) =  E - - a ~ h ( h , z , ® , ) ( q - z f  ', 

ici ®~ = z + q (q -z ) .  

Utilisant l'identit6 

Z ~ bh(h, •, z) = b~ (h, Z, z) + ~rh(h, X, z), 

appliquent une fois de plus le lemme 6.1 et raisonnant exactement de la mame 

mani~re que clans la d6monstration du lemme 6.2, on obtient l 'estimation cherch6e 

(6.15). Le lemme 6.3 est d4montr6. 

Cela ach~ve la ddmonstration du th6or~me 6.1. 

II y a lieu de noter que les op6rateurs C~ dans la r6presentation (6.1) ne sont 

pas d6finis de facon unique, quoique le symbole gradu6 ar(a o b) est bien d6fini 

par les symboles gradu6s o'r(a) et trr(b ) . Ainsi il est possible de donner d 'autre 

repr6sentations de la composition Aho B h analogues/t la mise en forme (6.1). 

En particulier, lorsque le symbole a(h,x,4) de la famille A h peut ~tre mis 

sous la forme d 'un polynSme de ((~, (¢), la formule (6.1) peut ~tre remplac6e par 

une autre, cette derni6re 6tant plus commode dans les applications. Notamment, 

le th6or6me suivant est valable: 

TH~OR~ME 6.2. Sous les hypothdses du thdor~me 6.1 et sous l'hypothkse 

suppldmentaire que le symbole a(h,x,~) de la fami l le  A h de o.d.f, soit un poly- 

n6me de ((~,(¢), tel que O~af fa(h ,x ,~)~_l=l_lP I, la formule  suivante est 

vdrifide 

(6.21) Aho B h = ]~ C]. 
j_->o 

Ici C~ sont des familles de o.d.f, de symboles 

1 (1 + ih(~)~(t - i h ( J  (6.22) cj(h,x, 4) = ~, (~ + fl)--~ 
I=I +Ial =J 

# = -# 
O~)~a(h, x, ~)D x, hDPx.hb(h, x, ~) 

a; et a~ ddsignant respectivemnt les diffdrentiations par rapport ?t ~¢ et ~¢, 

ordC~ = v + # - j .  
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DI~MONSTRATION. Notons que 

(6.23) (~  = (,~ + (1 + ih j (u ) ( t t j_ t j .  

utilisant la repr6sentation (6.7), la formule (6.23) et le fait que a(h, x, 4) soit un 

polynbme de (¢, (¢, nous obtenons, apr~s une s6rie de calculs 616mentaires, les 

formules (6.21), (6.22). 

Notons que si a(h,x, 4) est une fonction ind6finiment diff6rentiable de (~, (¢ 

telle que d~8~a(h, x, 3)~ ~-i~1-IBI ,  on peut obtenir dans ce cas pour la compo- 

sition Aho B h la formule (6.1) dans laquelle les symboles des op6rateurs C h sont 

calcul6s d'aprSs les formules (6.22), et le reste v6rifie l 'estimation (6.3). Darts ce 

cas l '6valuation se fait de la m~me manibre que dans la d6monstration du th6o- 

r$me 6 .1 . - -Les  formules (6.21), (6.22) sont plus commodes dans les applications, 

v u l e  fait que la plupart de bonnes approximations des op6rateurs diff6rentiels 

sont des polyn6mes en (~ et (¢ et que dans ce cas la somme (6.21) est finie. Un 

autre avantage que pr6sente l'utilisation des formules (6.21), (6.22), consiste 

dans le fait que pour leur application il suffit de d6finir les symboles a(h, x,O et 

b(h,x, ~) seulement aux points du r6seau R~,,h. 

7. Op6rateur eonjugu6 

A h 6tant une farnille de o.d.f., on d6finit au moyen du produit scalaire (1.1) 
la famille conjugu6e ~t h par l'6galit6 

(7.1) (Ahu, v) h=  (U, tAhv) h, 

Vu, v e Co(R:) ,  Vh e (0, ho). 

TH~OR~ME 7.1. Soit une famille des o.d.f. A h de symbole a(h ,x ,O~Aav.  

Il existe une seule famille des o.d.~, notde tab, qui v~rifie lYgalitd (7.1). En 

outre, pour tout N ~ 77~+ , N > 1, il existe des familles Cho, ..., c h  l de symboles 

co(h,x ,~) , . . . ,cs_l(h,x ,~ ) et une familIe R h teIIes que l'on ait: 

(7.2) ~4n= • c f +  R~, o r d C  h =  v - j ,  
O<j<N-I 

avec 

1 t et 
(7.3) cj(h,x ,O = • ~. a~(h,x,O, 

[~l =J 

la famil le  R h dtant continue de H,(O, ho) dans H,-~+N(O, ho) et vdrifiant l'in- 

dgalitd 
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(7.4) . . . .  N < c(s ,v;N,n)  ~ a<x>l'l+lN-~l+N¢ ~ I~1-~ 
I~[-<N 

On a ddsignd par 'a(h,x,¢) la conjugu6e de la matrice a(h,x,~) .  Pour le 

symbole gradud trr(tA h) de la famil le  conjugude tAh la formule  suivante est 

vdrifi~e 
1 ~  ~t 

(7.5) ar('a) = • ~.v ¢Dx aj(x, 4) 
~t~j • 

les fonctions matricielles taj(x,~) dtant conjuguges des termes correspondants 

du symbole #radud ar(Ah), 

(7.6) ar(a) = E aj(x,~), ord aj = sj, So = v, 
j>o 

et les ordres des termes darts le second membre de (7.5) 6tant respectivement: 

(7.7) ~ ~t = _ ord¢ ¢O  sj  I " 

D~MONSTRATION. L'unicit6 de l'op6rateur 54 h ne suscite pas de doutes, vue la 

densit6 de Co(R~) darts H0(0, ho), tandis que son existence est une consequence 

imm6diate du th6or~me de Riesz. 

La d6finition (3.1) d 'une famille A h des o.d.f, et la formule de Parseval donnent 

(Ahu, v) h = (270-* f . Z .  exp(ix~)a(h, x ,  ~ ) ~ t h ( ~ ( X ) h l  "..  hns ~ = (u,'Ahv) h, 
J T~, h x E Rx,h 

avec la notation 

(7.8) ('X~v)h(~) = (2~)-" ~ .  'a%(h, ~-rl ,  
~ T ~ ,  h 

Maintenant la formule de Taylor 

'ah(h,z,~) = Y~ (~--tl) ~. ,a • b(h,z, rl) + Rh(h,)~,~,tl) 
I~I_<N-I ~! 

et les m~mes raisonnements que dans la d6monstration du th6orSme (7.2)-(7.4), 

permettent d'obtenir les formules (7.2), (7.3) et l'in6galit6 (7.4). Utilisant de 

nouveau le th~or6me 2.1, on peut trouver la famille des o.d.f. C n de symbole 

gradu6 (7.5). On d6duit sans peine des relations (7.2)-(7.4), que tAb -- C a = T~.  

Cette demi~re ~galit6 signifie que ar(tA h) coincide avec le symbole gradu6 dans 

le second membre de (7.5). Le th6or6me 7.1 est prouv6. 

Tout comme dans le cas de composition de familles des o.d.f., les familles 

C~ dans les formules (7.2), (7.3) ne sont pas d6finies de faqon unique. I1 est plus 
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commode pour les applications d'utiliser une autre variante de la d6composition 

(7.2), (7.3). 

THI~ORI~ME 7.2. Sous les hypothkses du thdorkme 7.1 et sous l'hypoth~se 

suppldmentaire que trr(A h) = a(h,x,~) soit une fonction inddfiniment diffd- 

rentiable de (~, (~), telle que ~3~a (h,x, 4)~.L~'~-I~ I-l/q, la reprdsentation sui- 

vante a lieu: 

h h h .~. (7.9) tAb = ~ Cj + RN, ord Cj v - j ,  
O<=j<=N-1 

o~t les famil ies  C h, 0 < j < N -  1, ont pour symboles les fonctions matricielles 

c~(h, x, ~), 

1 (1 + ih(¢) (1 - ih(~) tj. (7.10) cj(h, x, ~) = ~, (~ + fl)-----~. 
I~l+l~l =J 

U~J~L"x,hLIx, h 

et la famil le  R~ satisfait h l'ind#alitd (7.4). 

La d6monstration de ce th6or~me est en tous points analogue h celle du th6o- 

r~me 6.2; l'estimation du reste R h peut ~tre obtenue par les m~mes raisonnements 

que darts la d6monstration du th6or6me 6.1. Notons que lorsque a(h,x,¢) est 

un polyn6me de ((¢, (~), les formules (7.9), (7.10) sont particuli~rement commodes, 

puisque darts ce cas R~ = 0, pour N suffisamment grand. 

8. In6galit6 de Ghrding 

L'analogue discret de l'in6galit6 de GriMing est particuli~rement important 

pour les applications en analyse num6rique, de m~me qu'il repr6sente un int6r~t 

pour la th6orie g6n6rale des op6rateurs aux diff6rences finies. Notons que sous 

une forme diff6rente et dans un cas particulier, cette in6galit6 a 6t6 d6montr6 

ant6rieurement darts [6] et trait6e de mani6re plus simple dans I-8]. Comme 

1 a 6t6 dit ci-dessus, les op6rateurs aux diff6rences finies consid6r6s darts les 

articles cit6s sont, en substertce, des approximations de l'op6rateur unit6. 

Avant de passer/t l'6noac6 de l'inSgalit6 de Ghrding, nous allons munir l'espace 

Hs(O, ho) d'une structure hilbertienne, en introduisant pour tout h ~(0,ho) et 

pour tout couple de fonctions de maille u, v ~Hs(O, ho) le produit scalaire 

(8.1) (u, v)~ = (2re)-" f ~ .  ((¢}2,fih({)~h(~) de o 

Pour s = 0 le procluit scalaire (8.1) coincide avec (1.l); lorsque s est un entier 
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non-n6gatif, le produit scalaire d6finit une toFologie ~quivalente ~ la topologie 

donn6e par le produit scalaire 

]~ Dx,hU(X)Dx,hV( )hi "'" hn 
N--s x~Rx,~ 

et cela uniform6ment par rapport au param~tre h s (0, ho). 

Pour simplifier nous supposons dans ce paragraphe que les familles des o.d.f. 

v6rifient la condition: So - sl _-__ 1, So et s a 6tant respectivement les ordres des 

deux premiers termes des symboles gradu6s des op6rateurs aux differences finies 

consid6r6s. 

Tn~.OI~ME 8.1. Soit une famille ph des o.d.f, d'ordre So, de symbole p(h,x, 0 

et de symbole #radud 

(8.2) ar(P h) = ]~ p/x ,~) ,  ord pj = s j ,  So - s x  _-> 1. 
. j _ ~ O  

Supposons que po(X,~) soit une matrice hermitienne non-ndoative en tout 

point (x, 4) ~ g"~ × (T; (0}). 

Alors l'indgalitd suivante est vdrifide 

2 (8.3)  R e ( P h u ,  >= - c II u ; 

ici la constante cne  ddpend pas de h et u. 

D~MONST~ATION. Tout d 'abord notons que l 'on peut se borner /t consid6rer 

seulement le cas off s = So = 0. En effet, notantA~ la famille des o.d.f, de symbole 

((~)~ et posant 

v = A~+S°/2u, 

on est conduit /t la necessit6 de d6montrer l'in6galit6 

(8.4) Re(Qhv, v)ho --> - c  I] v l] 2- a/z h, 

avec l 'op6rateur Qh suivant 

Qn = A~-~o/2p Ah~-~o/2 

Qh &ant d 'ordre nul et, vu le  th6or~me 6.l sur ta composition, la partie principale 

qo(X, 4) du symbole gardu6 ar(Q h) 6tant 

qo(x, 4) ---- [Og¢I-~°po(X, 4). 

Notons, en outre, que sans restreindre la g6n6ralit6, l 'on peat supposer que le 

symbole p(h, x, 4) de ph soit 6galement une matfice hermitienne non-n6gative. 



Vol. 13, 1972 DIFFERENCES FINIES 47 

En effet, duns le cas contraire, on pourrait consid6rer au lieu de ph une autre 

famille P~ de symbole 

¢gh-S°po(X, hi).  

Nous allons donc ddmontrer l'indgalit6 (8.3), en supposant que s =So = 0  et que 

e symbole p(h, x, 4) de la famille ph soit une matrice hermitienne non-n6gative. 

Co (Re) ~ support duns la boule Soit ¢(®) une fonction paire non-n6gative de ~o , 

I Ol N 1; on suppose, en outre, que 

(8.5) f,,~ ¢2(O)dO = 1. 

Posons 
(8.6) ~bh(~,2) = (~)-"/ '*¢((~¢)-1/2(¢-2))  
et 
(8.7) ~(h,~,2)  = ~ q~,(~ +2n2r - lh -1 , )~) .  

7 e Z  n 

Introduisons le symbole "r6gularis~" a(h, x, ~), 

(8.8) a(h, x, 4) = f ,, p(h, x, 2)¢2(h, 4, 2)d2, 
J T  ,T, 

et notons que pour h® suffisamment petit on a pour tout h e(0,  ho) l'identit6 

(8.8)' a(h,x,~) = fR: P(h'x'2)¢2(~'2)d2 = f~. p(h'x'~ - (f,>~°)¢2(o)d° 

vu que supp ¢ ( 0 )  = {I ® ] < 1} et que Ch(~ + 27D'r-a h - ~, 2) = Ch(~, 2 -- 2rc),r -~ h-  1). 

Introduisons 6galement le symbole "double" :  

b(h,~,X, rl) = f ~ , ? ( h ,  ~,2)p(h,x,2)~(h,q,2)d2.  (8.9) 

Notons par A h la famille des o.d.f, de symbole a(h, x, ~) et raisons correspondre 

au symbole "double"  b(h,x,~,q) une famille B h des o.d.f, selon la formule 

(8.10) (B'~u)h(~) = (2re)-" ~ ,  Dn(h, ~, ~ - q ,  rl)~n(rl)drl, 
J T  ,h 

ou l 'on a not6: 
bh(h, 4, Z, 17) = F,,-~x,hb(h, ~, x, rl) . 

On v6rifie ais6ment que le symbole fl(h, x, q) de B hest donn6 par la formule 

(8.11) fl(h,x, tl) = (270-"(_ ",?xp(ix~)bh(h,~,¢-tl, q) d~ ,j I 



48 L.S. FRANK Israel J. Math., 

Nous allons avoir besoin de trois lemmes dont les d6monstrations seront donn6es 

plus tard. 

LEMME 8.1. La famil le  B h de symbole (8.11) est autoadjointe par rapport 

au produit scalaire (1.1) et, de plus, on a 

(Bhu, U)ho > O, Vu ~Ho(O, ho). 

II existe une constante c inddpendante de h e t  u telle que l'on 

(8.12) 

LEMME 8.2. 

air 

(8.13) [ R e ( [ A  h Pl'lu u ~h - J ,  ,o l  < c H u ] l ~ - , , e . h  

LEMMV. 8.3. I1 existe une constante c inddpendante de h et u telle que l'on 

air 

(8.14) I([B h -  ReAh]u,u)ho] < c l lu l l  2 = - 1 / 2 , h  • 

On d6duit imm6diatement des in6galit6s (8.12)-(8.14) le r6sultat cherch6: 

- Re(Phu, U)ho < ([B h - Re Ph]u, U)ho < 

< [[B h -  ReAh]u,u)ho] + ]Re(EA h -  Ph]u,u)~] _--< 

__< c II u II ~_ ,,2.h. 

I1 reste /~ d~montrer les lemmes 8.1-8.3. 

D#MONSTe, ATION DO LEMMV. 8.1. Le symbole p(h, x, 4) 6tant une matrice hermit- 

tienne non-n6gative on a, rues la formule (8.9) et les propri6t6s de la fonctions • :  

(8.15) 'b(h, thX, O = b(h,~,x,~l), b(h,~,x,  rl) > 0 

off, comme d'habitude, l 'on a not6 ¢b(h, th x, ~) la matrice conjugu6e de b(h, rh x, O.  

Les relations (8.15) donnent: 

(8.16) f~e~ xpOxOu" ~h (Ob(h, ~,x, tl)exp(ix.tl)sh(tl)drld¢ > O. 

Multipliant les deux membres de l'~galit~ (8.16) par h~,...,h~ et sommant 

par rapport /~ x eR~, h, on obtient, rues les relations (8.15) et la formule de 

Parseval, l'in6galit~ chereMe: 

(Bhu, U)ho = (u, Bhu)ho > 0 

ce qui prouve le lemme 8.1. 

D~MONSTRATION DU LEMME 8.2. En substance, on est ramen~ au probl6me 
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d'estimer les normes des op4rateurs int4graux de Lz(T~,) dans lui-m~me, ayant 

pour les noyaux les fonctions matricielles: 

(8.17) ~ k(h'~'rl) = ((¢)½r~h(h'~-r/ 'q)--fih(h'~--rl 'FI)]((n)~: 

'k(h. 3. ,I) = C~)~['ah(h. ¢ - ~ .  ~) - bh( h . ~ - ~ .  4)] <C,> ~. 

L'in6galit6 de Peetre donne 

(8.18) I k(h, ¢, q) 1 < 2½((¢- v)'}l ah _ ,6hl <~.). 
Appliquant la formule de Taylor avec le centre au point ~/et le reste du deuxi6me 

ordre sous la forme int6grale au symbole p(x, h, r l -  (,(v)~r®), on obtient, vus 

la formule (8.8)' et le fait que ~bz(®) soit une fonction paire: 

- p(h,x,q)  = r [P( h,x,rl - (~) ' tO)  - P(h,x,q)]cp2(O) dO (8.19) a(h, x, rl) 
d R  

I1 est facile de v4rifier que 

(8.20) sup 
h,,t, ltOl_-< 1 

avec une constante C. 

E p~(h, x, rl - t<~)~®)®~2(®)dt  dO.  
I~l =2 

C. )  <~.-,<~.>~o)- 1 < C 

En effet, il suffit de d4montrer (8.20) pour r/v4rifiant les conditions 

~ 7 G ,  C.> > A 

avec une constante A suffisamment grande. 

Posant dans ce cas 
(8.21) ~ = ~ / -  t ((.)½(9 

et notant que pour t l O  I < 1 le jacobien D~/D~I de la transformation (8.21) 

v6rifie avec une constante C l'in4galit6 

I ] - e <= c <~.>-~, 

on est conduit ~t la conclusion que pour A suffisamment grand, la transformation 

(8.21) poss6de une transformation inverse: r/ = r/(~) qui v4rifie l'inSgalit6 

avec une constante C ind~pendante de h. Cela prouve l'in4galit4 (8.20). 

Utilisant (8.17)-(8.20) et appliquant les m~mes raisonnements que pour l'esti- 
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marion du reste R~ dans la d6moastration du th6or~me 6.1, on obtient pour 

k(h, 4, rl) l'indgalit6 

(8.21)' max / sup  f r "  ]kl dr/,sup fr¢ ]kidS} < 
I, h.dj h h,r/ 

_-< Co Z Ip<x:¢.h~l, 
1~1_-<2 

avec urte constante Co d6pendant seulement de ho et n. 

Les m~mes raisonnemeats permettent d 'obtenir l'in6galit6 (8.21) pour le noyau 

tk(h,~,rl), probablement, avec une autre constante Co. 

Cela 6rant et compte term du lemme de Schur, on obtient l 'estimation (8.13) 

avec la constaute 

I~I_-<L 

Le lemme 8.2 est d6montr6. 

D~MONSTRATION DU LEMME 8.3. Vue la formule de Parseval, on peut r66crire 

i a forme quadratique dans le premier membre de (8.14) sous la forme 

( [ B ' -  ReAh]u'u)h° = IT" fr" k(h'~'rl)uh(rl)Uh(¢)d~ld¢ (8.23) 

avec 

(8.24) 2k(h, 4, rl) = 2 bh(h, 4, ~ -rl ,  rl) - an(h, ~ -rl ,  rl) - 'ah(h, ~ --rl, 4). 

Posons X = ~-~/ et notons que, vues les formules (8.8), (8.9) et compte tenu 

du fait que le symbole p(h, x, 4) est hermitien, les identitds suivantes sont valables: 

(8.25) ah( h, Z, r/) = /~h(h, r/, Z, r/), 

'~(h,  Z, 4) = ~h(h, n + Z, Z, ~ + Z), 

/~h(h, 4, Z, r/) = /~h(h, r/+ Z, Z, r/) = bh(h, t/, Z, r/+ Z) • 

Puis posant 

0h(,7) = C~)-~h(,1), 

on ram~ne la d~monstrafion de 1'in~galit6 (8.14) ~t l'estimation darts L2(T~h) d'une 

forme quadratique ~t noyau 

(8.26) G(h, 4, rl) = (~¢)½k(h, 4, rl) (~,~)~ . 

On v6rifie ais6ment, utilisant le lemme de Schur, que 
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(8.26)' sup f r"  ~ fr".G(h'  4, rl)O~(tl)~h(~)drld~ <= 

_< M SUPh g'("~,,I G"(¢)I 2 de 

avec une constante M ,  donn6e par la formule 

(8.26)" M = (2rr) -n fR sup <~¢>~<¢,>~ [ 2b(h, 4, ;G q) - 8(h, Z, r/) - ta(h, Z, 4) I dz. 

Vues les relations (8.24), (8.25), on peut r66crire le noyau G de maniSre suivante: 

G(h,~,r/) = (~,~+~)~(bh(h, rl + X,Z,~l) - bh(h, rl, Z,q) + 

+ ,5~(h. n. z. n + z) - ~ (h .  n + Z. Z. n + Z)} <~,>~ --- 

(8.27) + bh(h, r/, Z, ~/) [<¢.>½ - <(,+z) ~] <¢,>~} + 

+ {[[~h(h, rl, Z,q + Z)<(,~) ~ -- bh(h, rl + Z,Z,q + Z) <(,+x) ½ 

+ b"(h.rl + Z . Z . r / +  Z) [<~,+x> ~- - <(,>~'] <(,+x> ~ 

= G 1 + G2 + Ga + G 4. 

Puis, il est 6vident que: 

G~ = <~>~r b~(h,~l + tz,Z,~1)<~+tx>¢]dt, 

Utilisant une fois de plus la formule de Leibniz-Newton, on obtient: 

(8.28) G ~ + G 3  = 

fo'fo = - ~ {<~.+~x> ½ -fffft[<~,+tz>¢[~(h.rl + tT..rl + sz)]} dtds .  

Pour plus de commoditi6 introduisont  les notations:  

(8.29) <~.+.x> = <(.> 

a # ~ h  aea,~ b (h, #, Z, r/) = b ''~ ~'(h, 4, Z, r/) . 

D6signant par ~ la fonction sous le signe d'int6grale dans le second membre 
de (8.28), diff6rentiant, utilisant (8.29) et notant  que 
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( 8 . 3 0 )  dt  <~t>~ = <( t>-3/2  ~ ( ( t  -[- ~t))~a' 
I~1=1 

on t rouve  

(8.31) @ = _ ( ~ > t < ( , > t  ]~ b ~'~ h(h, r / +  tZ, Z ,~ /+  s z ) g ~  p - -  

Israel J. Math., 

~ <~t>~<~s> -3]2 ~., (~  +~)b~'°"(h, rl + tz, Z, rl + sZ)Z"Z p - 
I~l=I#l=l 

<(t>-3/2<(s> ~-~ ([~ + (~)b~'P~(h, rl + tg, Z,n + sZ)Z~Z a - 
I~1 =1#1 =l 

16(~t>-3/2<~s> -3/2 ~' ( ~ +  ~)(~#s + ~#s) X 
bl=IPl=i 

[~(h, rl + tZ, Z, tl + sZ)Z'Z p. 

Vue la formule  de Poisson (cf. [2]) ,  on peu t  6crire pour  tou t  symbole  double  

C(h, ~, x, r/): 

(8.32) CA( h, ¢, Z, ~/)Z ~ = ~ ( h ,  ¢, Z, r/) + Q,,(C~), 

avec 

(8.33) Q~(E. ̂ ) = - E 
0:~7e2~ n 

et  c o m m e  d 'hab i tude ,  

Ch(h,~,Z + 2nyr - :h - l , t l ) (Z  + 2nTr-~h-~) ~ 

~ ( h ,  3, Z, tl) = Fx~z,n(D] C(h, 3, x, tl)), 

y r - i h -X  = (71r- l lh-1, . . . ,y ,r-~lh-1) .  

M a i n t e n a n t  on peu t  rd4crire (8.31) sous la fo rme:  

la,lg h i .  
(8.34) • = - (~>½(( , )~  ~ o,+p(n, tl + tT~,Z,t/+ sz) - 

I~1 ::IPl =i 

- -  ~<~t>-3/2 <~s> ~ 

1 
16 <(t>-3/2<(s>-3/2 

- <L>i<(,>-i 
I~I =IN =1 

2] 
N =IBI =I 

a , O  h 
2 ( ~  + ~)b~+p (h, t l+ tX ,  X, t l+S2)  

i~l=lN =1 

E (~+~,)b~,p (h,,l+tZ, Z,,7+sz) 
I~1 =IPl =i 

'~"h (£+ ¢)(~ + ~)b,÷p (h,,+tz, Z, 
M =IBI =~ 

~/+ sx) 

Q~+~(ba,"p ~) _ i{(~}I{(~>-3/2 

(~ + ¢ha.+~(b °7°~) - 
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- (~t) -3/2(~)  ~; Z (~  + ('~)Q~,+a(b °'~ ) - 
I~l =1~1 =~ 

E # 

Si l 'on veut utiliser (8.26)' pour  estimer la forme quadratique ~ noyau (8.26), 
, , )  t! il faut estimer sup6rieurement la constante M d6finie par (8._6) ce qui conduit, 

son tour, ~ la n6cessit6 d'evaluer l 'expression 

fR folfo Isupl cb]dsdtdZ" 
z h,~.~ 

Vue l'in6galit6 (4.7), on obtient pour les int6grales des quatres premi6res 

sommes darts l 'expression de • par la formule (8.34) la majorante suivante: 

tD 
(8.35) [ .  sup (~¢)~(~.)~ . 2 [ b,+#(h,~,Z,t/)[ "'g dz + 

X h,~J/ I~1 =l,al =1  

1 fR sup (~¢)~r(~,)-~ E [ .,0 + 2 ~ h,¢,n I~l=l~l =1 b~+B(h,~,Z,q) Idg + 

1 fR sup ( ~ ) -  ~r(~,)~r ~ [ O4 ,, b, +.o(h, ~:, Z, dz -I- 
+ 2 z h,¢u I,q=l,~l=l 

~R 
1 . sup ((¢)_ ~r((.)_ ~ 2~ [b~+~(h,~,X,q)[dz. 

(8.36) 

il vient: 

Int6grant les restes Q~(C h) par rapport  ~t X et 6valuant les int6grales de la m~me 

mani~re que dans la ddmonstration du th6or6me 6.1. on obtient pour eux une 

estimation dont  le second membre est le produit  de la majorante (8.35) par une 

constante ind6pendante de h. 

Maintenant on va estimer les int6grales des fonctions G2 et G4 dans (8.27). 
Notant  que 

[ bh(h, r/, Z, r/)[ (~z) < (Z) [/~(h, r/, Z, r/)[. 

La derni~re in~galit6 donne 
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(8.37) f , .  suplG2ldx < fR supl[~<">(h'q'X'q)ldz" 
;£ h , ¢ . t l  ~ n Z h . rl 

On obtient de la m~me mani~re l'estimation (8.37) pour G4 dans (8.27). 

Finalement, la constante M donn6e par (8.26)" est major& par la somme 

de la majorante (8.35) (multipli6e par une constante) et de la majorante (8.37) 

multipli& par deux. Puis notant que pour h < ho, ho &ant suffisamment petit, 

o n  a 

fr:.h(~)l a¢O(h, ~, 2) 12d2 = fR: (~¢)÷ ] 0¢ ((~¢) -,/4~(((¢)_~(¢ _ 2))) [2 d2 

et que 

L <~>{1 a~(<¢¢> -"/* ~(<(~)-~(~ - ,~)))12ay < oo sup  
h,¢ d"~. 

on peut majorer la constante (8.35), vues la formule (8.9) et l'in6galit6 de Schwartz, 

par la quantit6 

(8.38) Co I ~<.21o, 

ici la constante Co ne d6pend que de h o et n. 

Puis notant que pour h < h o , ho &ant suffisamment petit, on a l'6galit6 

A 

et utilisant la formule (8.8) et la premiere des identit6s (8.25), on peut 6valuer 

sup6rieurement l'int6gral dans le second membre de (8.37) par la quantit6 

(8.39) Col~<x>,[o, 

off Co est une constante qui ne d6pend que de ho et n. 

Ainsi, la constante M dans (8.26)" est born6e sup6rieurement par une majorante 

du type (8.39); vue l'in6galit6 (8.26)', cela donne l'in6galit6 cherch6e (8.14) avec 

une constante du mSme type (8.38). Le lemme 8.3 est d6montr6. 

Cela ach6ve la d6monstration du th6or6me 8.1. 



Vol. 13, 1972 DIFFERENCES FINIES 55 

BIBLIOGRAPHIE 

1. L. S. Frank, Difference operators in convolutions, Dokl. Akad. Nank SSSR 8 (1968), No. 2. 
2. L. S. Frank, Spaces of net functions, Mat. Sb (n. s.), 86 (128) (1971) 2(10). 
3. K. O. Friedrichs, Pseudo-differential operators, an introduction, Lecture Notes with the 

assistance of R. Valliancourt, Courant Institute of Mathematics and Science, New York Univer- 
sity, 1968. 

4. L. H~rmander, Algebra of pseudodifferential operators, Comm. Pure Appl. Math. 18 
(1965). 

5. J. J. Kohrt and L. Nirenberg, Algebra ofpseudodifferential operators, Comm. Pure Appl. 
Math. 18 (1965). 

6. P. D. Lax and L. Nirenberg, On the stability for difference schemes: a sharp form of G~r- 
ding's inequality, Comm. Pure Appl. Math. 19 (1966), 437-492. 

7. V. Thom6e and B. Westergren, Elliptic difference equations and interior regularity, Numer. 
Math. 11 (1968), 196-210. 

8. R. Vaillancourt, A simple proof of Lax-Nirenberg theorems, Comm. Pure Appl. Math. 
23 (1970), 151-163. 

9. M. Yamaguti and T. Nogi, An algebra of  pseudo difference schemes and its application, 
Publ. Res. Inst. Math. Sci. Ser A. 3 (1967), 151-166. 

THE ~-IEBREW UNIVERSITY OF JERUSALEM 


