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ABSTRACT

An algebra of difference operators is introduced and some of their properties
are studied. It is shown that thisis a C*-algebra and a differences analogue of
Gérding’s inequality is proved.

Introduction

Vu le role que les opérateurs aux différences finies jouent en Analyse Numé-
rique et l'efficacité de leur application aux problémes différentiels, une étude
indépendante des propriétés algébriques et fonctionnelles de ces opérateurs
s’imposait depuis un certain temps.

La théorie générale des opérateurs pseudodifférentiels ayant été mise au jour
(cf. [4], [5]) et s’étant avérée efficace dans les applications on ressentait un besoin
urgent d’avancer sur cette voie la théorie des opérateurs aux différences finies.
Une étude indépendante de ces opérateurs était d’autant plus nécessaire que
dans tout voisinage d’un ‘‘bon’’ probléme différentiel il existe des ‘“‘mauvaises”’
approximations ne conservant pas sur les réseaux les propriétés fondamentales
du probléme approximé.

On étudie dans cet article une algébre des familles uniparamétriques d’opéra-
teurs aux différences finies, introduite dans [1], ce qui permet d’établir sans trop
de difficultés et dans toute sa généralité la théorie elliptique de ces opérateurs
aux différences finies, la notion d’ellipticité de tels opérateurs ayant été introduite
dans [1] et, indépendamment dans [7] pour les schémas aux différences finies
approximant un opérateur élliptique différentiel. Les propriétés de 1’algébre
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étudiée sont, en quelque sorte, analogues a ceux de ’algébre pseudodifférentiel
de Kohn et Nirenberg [ 5] et de Hsrmander [4]. Toutefois, il y a lieu de remarquer
que le caractére discret et non-local des opérateurs aux différences finies, 1'utili-
sation des espaces de fonctions de maille et la présence d’un petit paramétre (le
pas du réseau) font que I’étude dans le cas discret différe sensiblement du cas
pseudodifférentiel. En établissant les formules de commutation et celles pour
e symbole de 'opérateur conjugué, ainsi que I’analogue discret de I'inégalité
de Garding, les estimations des normes des opérateurs—restes sont données &
partir des symboles des opérateurs correspondants. Une algébre des opérateurs
aux différences finies d’ordre 0 dans L* a été introduite dans Particle [9]. Cette
algébre avait un caractére spécial et était essentiellement adaptée a I’étude des
systémes différentiels hyperboliques du premier ordre,

Les opérateurs aux différences finies étudiés dans [6] et traités de maniére
plus simple dans [3], [8] n’étaient autres, en substance, que des approximations
de I'unité. De tels opérateurs dits opérateurs de passage d’une valeur temporelle
a une autre, ou, encore, opérateurs d’amplification, apparaissent lorsqu’on
discrétise les problémes différentiels avec les données initiales.

L’algébre introduite dans [1] et ci-dessous a pour objectif principal le déve-
loppement de la théorie elliptique des opérateurs aux différences finies.

On va exposer brievement le contenu de I’article. Les notations nécessaires
sont données dans le §1. On introduit dans le §2 les classes des symboles matriciels
et I’on définit ensuite, dans le §3, en partant de ces symboles, les familles uni-
paramétriques des opérateurs aux différences finies. Dans ce méme §3, on dé-
montre que ces familles sont uniformément bornées (par rapport au paramétre)
en tant qu’opsrateurs de Cg(Ry) dans C™(R"). On définit dans le §4 ’ordre
d’un opérateur aux différences finies et "on démontre qu’un tel opérateur est
borné dans les espaces des fonctions de maille H (0, i) correspondants (cf [2]).
Dans le §5 on établit I’analogue discret du théoréme du noyau et 1’on en déduit
quelques conséquences utiles. Le §6 est consacré a 1’étude des formules de com-
mutation pour les opérateurs aux différences finies. Dans le §7, on établit des
formules analogues pour le symbole de I'opérateur conjugué. Finalement, on
démontre dans le §8 I’analogue discret de I'inégalité de Garding, en utilisant
I’échelle des espaces H (0, h,y) des fonctions de “‘maille”. On ne fait aucune sup-
position sur Papproximation, en particulier, les résultats restent valables pour
les opérateurs aux différences finies approximant des opérateurs pseudodifférentiels.
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1. Notations

Comme d’habitude, on note par Ry l’espace euclidien réel de dimension n
et par R} I’espace dual des formes linéaires sur R.. Puis on désigne R} = {t eR!
,t > 0}. On note par R}, une famille uniparamétrique de réseaux dans R, de
pas h; = r;h en x;; pour tout h, 0 < h < ho, le réseau R}, contenant ’origine;
ici r;, 1 £ j < nsont des constantes positives. On désigne par T,", la famille
uniparamétrique des tores duals & R ,, T, = {é€R}, || < n}; au lieu de
T, on écrira T,” On réserve la notation usuelle Z” pour I’anneau des n-uples
dont les coordonnées sont des nombres entiers, tandis que Z." désigne ’en-
semble des n-uples de Z" dont les coordonnées sont non-négatives; on appelle
les ¢léments de Z} multiindex. Puis on pose {; = {{;, -, {}, (¢, = (ih)~!
(exp(ih;¢;)—1) et 'on note wy le vecteur aux coordonnées complexes qui s’obtient
de {,, lorsque h = 1. Pour tout { de I’espace complexe C" de dimension n on
pose: <> = (1 + IC ,2)5/ 2. Pour toute fonction de maille u(x) a valeurs dans R”
on note par #'(¢) sa transformée de Fourier discréte. Si u(x) est une fonction
d’argument continue, on note, comme d’habitude par #(¢) sa transformée de
Fourrier intégrale. Nous désignons également par F,_,, et F,_, respectivement
les opérateurs de la transformée de Fourrier discréte et intégrale, les opérateurs
inverses étant désignés respectivement par Fg:,i,,, et F;_fx On pose:

(1.1) W)= X u(x)o(x)h,-h,

xeRx™n

On conserve les notations usuelles C* et Cy pour I’ensemble des fonctions
indéfiniment différentiables et celui des fonctions indéfiniement différentiables
3 support compact. En ce qui conzerne la définition et les propriétés des espaces
de fonctions de maille C*(0, k) et H (0, hy), nous renvoyons le lecteur a I’article
[2]. On écrit C* et H, tout court lorsqu’il n’y a pas le danger de confondre
ces espaces de fonctions de maille avec les espaces classiques correspondant des
fonctions d’argument continu. Posons, ensuite

C*(0ho) = [} €O, ho), Ha(0,ho) = () H(0: o)

On note par ZL(W,, W.) I'’ensemble des opérateurs linéaires continus de 1’espace
de Banach W, dans I’espace de Banach W,.

Soit a(x,&) une fonction sur R} X R; & valeurs dans P’espace des matrices
carrées d’ordre p. Pour tout couple a,f€Z", on pose
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ag(x, &) = Diofa(x, &)

ou D! = pfr...plr D, = —id,, 0f =98t 02

wad

0, et 0, étant respsctivement
les dérivées premiéres par rapport a x; et &;; parfois, on écrira a_;,s:« au lieu
de ay(x,%).

Puis on désigne

g jen(%,8) = (1 + |0, 0%a(x,8),

ol aeZ™, jeZl, et 'opérateur pseudodifférentiel (1 +] 6sz)’-’ est défini de
facon usuelle.

Posons encore: D, = (D, 4, Dy, n)s Dep = Dy x, - Dx,n,) OU Dy et
ij‘ » sont des opérateurs de différences finies premiéres respectivement en avant
et en arriére, multipliées par —i. On note par

G)x,h = (®x1.h’ tT0 ®xn,h,,)a c:)x.h = (éxl hys """y @x,I h,.)

les opérateurs de translations de pas (hy, -, h,) respectivement en avant et en
arriére. 1l est clair que les identités suivantes sont valables:

Oy, = 1+il;D,, 4, O, =1—ihD

Xj.hj

ol, sous la forme vectorielle
®xh_'1+lthha .x.h——l—ithyh

Puis, comme d’habitude, pour tout «eZ%, on pose Dy , = D', - Din et de
méme pour tous les autres opérateurs définis sur le réseau. On désigne par ‘a(x, £)
la matrice conjuguée de a(x, £) . Puis on réserve la notation ag "(x,&) pour la trans-
formée de Fourrier discréte de ay(x,&) par rapport & la premiére variable, la
variable y étant duale de la variable x . Quelquefois on écrira également df‘_ in)BEe .
Respectivement aj(x,£) est la transformée de Fourrier intégrale de ag(x,¢)
par rapport 4 la variable x. On note par | a(x, £)|, ou par | a| tout court la norme
de la matrice a(x,&).

Soit ¢p()eC® pourt =2 0et0 = d() < 1,0(t)=0pour0 St <6, 9() =1
pour t = 25. Posons

(12) ¢: = (L))
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2. Classes des symboles quasihomogénes Kv. Classes des symboles -#’v. Symboles
gradués

Classes K|, .

Soit a(x,&), une fonction sur R; x R & valeurs dans I’espace des matrices
carrées d’ordre p, qui dépendent périodiquement de & avec les périodes
Q2n/ry,--+,2n/r,). Le nombre v étant réel, on définit pour tout j Z} et tout

axeZ”, les normes

Q1) [ at e

T = ()" Sup f o SupEY| a6 0)] || d

Tx

et les normes

(2.2) | @cxyoge

ol -y = (2n)""fRn S?p G | e, ©) | | g ¥~y

Par définition, la classe K,, ve R!, est composée de toutes les fonctions a valeurs
matricielles a(x, &) qui vérifient les conditions

(2.3) [ @eyses

2] —v <, V(],Q)GZ]; X 219

en outre la fonction a(x, &) est dite symbole canonique ou quasihomogéne d’ordre
v. On note par ord a ’ordre v du symbole a.

Symbole gradué.

Soit {s;};%o une suite de nombres réels, en outre, on suppose que s; | — 0.
On appelle symbole gradué et I’on note par o(a) la série formelle
(2‘4) 0'1-(0) = Z g a(xa 6) 3 ja(x9 é) € Ksj .

jzo

Classes .7, .

Soit a(h, x, &), (x,£)eR; x R;, he(0,h;) une fonction a valeurs dans
I’espace des matrices carrées d’ordre p, a dépendant continument de (h,x,&)
et &tant pour tout he (0, hy), une fonction indéfiniment différentiable de (x,¢);
on suppose, en outre que a est périodique en & avec les périodes (2n/h,, -, 2n/h,)»
h_] = rJh .

On définit pour ces fonctions matricielles Ies normes

(2.5 gyl jp-y = @07 fR» sup 7 | dgalh, 1, E) | <G> dy,



Vol. 13, 1972 DIFFERENCES FINIES 29
X

@5) [awsseelp-y = <2”)'"S},‘pf v SUp Y | 3 8] <y

Ry
veR!, jeZ}, acZt.
On définit la classe .#, des fonctions matricielles a(h, x, &) ayant les propriétés

ci-dessus et vérifiant la condition: il existe un symbole gradué

or(@) = Z*a(x,%), “acK,,, so=v
k=0

tel que les inégalités suivantes soient vérifies:

(2.6) | " xyiee|jai=sn < 0, Y(j,0, N)eZ} x I% X2},

Ne = Np(h,x,&) dans (2.6) désignant les restes:

{Nr(h,x,é) =ahx&—¢y L K™ fax,hd), Nz 1
0Zk<N
or(h,x,8) = a(h,x,£).

les

2.7

La fonction matricielle a(h, x, &) est dite symbole.

TufoREME 2.1. Soit un symbole graduéar(a) = X 5o Ya(x, &), avec *a ek,
so = v. Il existe un symbole a(h,x,§)e &, ayant or(a) pour symbole gradué.

DEMONSTRATION. Soient ¢(f) la méme fonction que dans (1.2) et {#,};", une
suite de nombres réels tel que 7, | 0. Avec les notations

(2.8) “b(h,x,8) = dt| LD *a(x, hE)

on pose

(2.9) a(h,x,&) = X *b(h,x,0).
k=0

Pour tout h fixe, he(0,h,), et pour tout couple (x,&)eR; x R il n’y
a dans la somme (2.9) qu’un nombre fini de termes qui ne disparaissent pas.
Mettons t, = 1 et choississons #,, k = 1, de maniére que soient vérifiées les

inégalités

(2.10) |“beayses|aj-sees £ 275, J+]|a] S k.
On va utiliser la formule de Leibnitz pour estimer le terme
(2.11) iy = DT ] Lh Fa(y, b))

1l est facile de voir que les termes du second membre de (2.11) ne contenant les
dérivées de ¢, peuvent étre majorées
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~

(2.12) | plti] LD Magaysge

= Ci‘ip (oG] L] e ™ D g T|| *a e

]a[—-sk_‘ é

lal =5
Puis, vu que ¢(t,|{¢|) = 0 pour [, < 5, 0on a

¢t l Zh l Cé, sk—IzI<C§> laf skt < Jof Pt

de sorte que Iexpression dans le second membre de (2.12) peut étre majorée par

~

(2.13) Coti 7 Tagysge

la] —sx *

Les termes dans le second membre de (2.11) contenant les dérivées d’ordre g
de la fonction ¢, possédent également le facteur #; compte tenu du fait que
dans le support des dérivées de ¢ on a: t, ~ ]Cél‘l , on arrive immédiatement
a la conclusion que les termes en question sont bornés supéricurement par une
majorante du type (2.13). Ainsi, on a montré que

~

k St—1—Si|| k
| *bixyree et -rs S Calt™ ™| gy o | o1 ~ou-
Posant
= sup C,|*%
m, = p all O¢xylee |a] = sk
FRALIEY;

et choisissant #, de maniére que ’on ait

t é (mk—l 2—k) (sk—1—sk)~ 1t

on obtient finalement les inégalités voulues (2.10).
On vérifie aisément que la fonction a(h, x, &) définie par la formule (2.9) satis-
fait les conditions (2.6). Le théoréme 2.1 est démontré.

3. Définition d'un opérateur aux différences finies (0.d.f.) par le symbole.
Relation avec le symbole gradué

Soit une fonction matricielle a(h,x,&)e%,. On définit pour toute fonction
u(x)e Cy(R}) 4 valeurs dans RP, une famille d’opérateurs aux différences
finies 4", 0<h < hy:

3.1 A'w = F L a(h, %, EF g u + Tou.

. . . , . h . .
Ici et dans tout ce qui suit, on réserve la notation T, pour une famille uni-
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paramétrique d’opérateurs jouissant de la propriété suivante: 1’image de H (0, h,)
par T" appartient a Despace H (0, ko), quelque soit seR".

Quelquefois on usera de la notation a(h, x, D) pour désigner une famille A" des
o.d.f.

On appelle symbole d’une famille A" et ’on note a(Ah) la fonction matricielle
a(h,x,) intervenant dans le second membre de la formule (3.1); le symbole
gradué o(a) est dit également symbole gradué de la famille 4" et noté dans ce
cas o(4").

TuforEME 3.1. Soit ac Z,. Alors la famille des opérateurs:

(3.2) A" Ce—C®,
est uniformément bornée par rapport a@ he(0,ho).

DEMONSTRATION.  Vue la formule de Poisson (cf. [2])

(3.2) & = X uE+2myrthTY,

velZn

o r=(ri, st yr = (e Yy Y, et compte tenu de la périodicité
de la fonction a(h,x,£) en £, il vient immédiatement:

(3.3) Al = Fla(h,x,&)F, u = 2ny" f e a(h, x, &) a(&)dé
Re

YueCy(RY) .

La fonction (&) décroissant rapidement et la fonction a(h,x,£) étant une
fonction de la classe C* en x, la possibilité de différencier sous le signe d’inté-
grale dans le second membre de (3.3) ne suscite pas de doute. Appliquant la
formule de Leibnitz, ainsi que multipliant et divisant par {{;>", il vient,

o!
&A") = @n f e™ay(h, x, &) LT e &) E.
( ) ( ) ﬂ(a ﬁ'(“ ﬁ)' R" B )<-§> ( ) <<§> (f) 6
Maintenant pour démontrer le théoréme il suffit de noter que
:up§ !aﬂ(h,xﬁé)l<c¢’>_v é lﬁ(x>j|-v, J = Iﬁl >
et que
e = (.
Le théoréme 3.1. est démontré.

Le théoréme suivant établit le rapport entre I’opérateur aux différences finie 4*
de symbole a(h,x,&) et le symbole gradué o(a) = X,., ka(x, €.
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TutorEME 3.2. Soit A" une famille de o.d.f. de symbole a(h,x,&) et soit
or(a) = X o a(x,&) le symbole gradué de a(h,x,{). Alors on a la formule
asymptotique:

la} —sx

po ‘a*(x,mDsf>

(34)  exp(—ih~'x.n) A'exp(ih 'xmf)= X

k2002
(h—0)

ne T, \{0}, fe CJ(RY).

DEMONSTRATION. La définition (3.1) et I’identité (3.3) donnent:

exp(~ ih™ x-1)A"(exp(ih™ " xn)f) =(2”)_"ch exp(ix.(§ —h~ 'math,x,), € —h""n)
d¢

= @)™ [, exp(ixBath,x,2 + b fDz.

On va utiliser la formule de Taylor

a(h,x,& + i = X %a“(h,x, B in)E*+ Qu(h, x, &, 1).

Je] <N

Vue la définition (1.2) de la fonction ¢,, on a pour h suffissemment petit ¢,-1, =1,
ce qui donne immédiatement dans ce cas
(3.5) hsu—[all aa(h’ x,h_ln) _ 3 psk kaa(x’ ’1)] <

0gk<M

M
| " raliat-oe» VM 2 1, Vae 77,

les fonctions Mrca étant définies par les formules (2.7).
Les inégalités (2.6) et (3.5) permettent d’écrire 1’égalité asymptotique
(3.6) a*(h,x,h~'p) = X R kg (x, ) (h - 0).
k20
11 reste, pour achever la démonstration du théoréme (3.2) a estimer la quantité

o= = L [ ahxn 7+ pOctexp(ix. ) FQ)E.
jai=n @l JRg
Posant E, = {£eR;: h|&| < 27Yn|} et notant que

sup ,a“(h,X,h_lﬂ +p£)| = :UEp <Ch"n+p§>v_N|ﬁ§°‘l N—vg ChN_v’a,{“lN-v’
€ L'n

SeEn

ainsi que
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sup ]a“(h,x,@)] < lﬁéalN_y, Ia] =N
h,x @

on est conduit a la conclusion que le reste est borné supérieurement par la quantité

3.7 e o
( ) C|a|z=:NIa§alN—v fR; &> ‘J(f)ldé +

+ Nl 7 i@

fﬁlélzz—:é? ‘J(é)l <

La fonction f appartenant & Cq(R}),la seconde intégrale dans (3.7) décroit plus
rapidement que W , quelque soit j. Cela achéve la démonstration du théoréme
3.2.

En réalité, on a démontré un peu plus. Notamment, on a démontré que

%] = s
exp(— ih‘lx-ry)A"(exp(ih'1 xnf) - z E—a'

|a] <N,k<M

*a(x,p)D"f = O(hN ™Y + 1)

lorsque h —» 0

uniformément par rapport 4 x € R} et pour toute f(x) appartenant & un ensemble
borné dans Cg(RY).

En tant que conséquence du théoréme 3.2, on obtient le résultat suivant:

THEOREME 3.3. Le symbole gradué d’une famille de o.d.f. A" est défini de
Jfagcon unique.

DEMONSTRATION. Eneffet, soient (@) = X 4x0'aPetaP(@) = Z,<0%a?
deux symboles gradués de la famille A", Vue la formule (3.4), il vient immédiate-
ment
(1

ord a® = ord ¥a®, ¥V =K@, k=0.

4. Ordre d’un opérateur aux differences finies. Théoréme de continuité dans les
espaces H, (0, hy)

Soit une famille A* = a(h,x,D,) de 0.d.f. de symbole a(h,x,&)e.Z,. Si pour
tout u <v on a: a(h,x,&)¢ Z,, alors le nombre v est dit ordre de la famille

A", On écrira dans ce cas
h
ordA” = v.

THEOREME 4.1. Soit une famille A" et ord A" = v. Alors Popérateur

A" CP(RY) - C*(RY)
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peut étre prolongé comme opérateur linéaire continue de H,,, dans H; pour
tout seR'. En outre modulo I’opérateur Tl, les estimations suivantes sont
vraies

@.1) | A" asom, S 28 ey

DEMONSTRATION. Etant donné que Co(R}) est dense dans H(0,h;), VseR!
(cf [9]), il suffit de démontrer I'inégalité

4.2) | A% |on = C |4 [s4v 4, YueCTRD),

-v

avec une constante C indépendante de h et u.
11 est facile de vérifier que pour une famille A* de simbole a(h,x,¢) la repré-
sentation suivante est valable (modulo Ty)

43 @0)'© = 0™ [, @bE-n oy

Posant

) = <L), W) = L AW @),

on obtient une famille d’opérateurs aux différences finies

PO = @ [0 €I G P,

n . . h
dont la norme dans L,(T,’,) coincide avec ” A ”H_h__h_,H_,h.
Le lemme de Schur bien connu permet de réduire 'estimation de la norme
“ A"”HSJ,V_,,_,HSJl a D’évaluation des expressions

sup [, sup <] b —nm)] <ty 7OV
h HhoN

4.4)
supfrn sup | A h,E—n,m) | <Ly~ Van

h vk

On va avoir besoin d’une variante du lemme de Peetre.
Lemve 4.1, Quleque soit seR*, les inégalités suivantes sont vraies:
4.5) Y™ S 2K
DEMONSTRATION DU LEMME 4.1. L’inégalité de Peetre classique (cf. [5]), donne
W Ly ™ = 20— M.

Aprés un calcul élémentaire, on obtient

L= L = g
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ce qui prouve le lemme 4.1.
Appliquant (4.5) on obtient pour les expressions (4.4) la majorante

B
2, '[a<x>‘s|]_.v .
Maintenant pour obtenir I'inégalité (4.1), il suffit de montrer que
4.7) [y S [dcapia]-s -

Cette derniére inégalité est le résultat immédiat de la formule de Poisson (cf. [2]),
qui établit le rapport entre la transformée de Fourrier discréte et intégrale.

5. Théoréme sur le noyau d’une famille de o. d. f. de symbole gradué nul

Dans ce paragraphe on va étudier la structure d’une famille A* d’opérateurs
aux différences finies dont le symbole gradué o (a) est identiquement nul.

THEOREME 5.1.  Soit une famille A" de o.d.f. de symbole a(h,x,&) dont le
symbole gradué or(a) s’annulle identiquement

(&R)) or(a) = 0.

Alors la famille A" admet la représentation:

(.2) Auyx)= X Khx,p)uphy-h,, ueCoR}),
yeR

la famille de fonctions K(h,x,y), he(0,hy), dans le second membre de (5.2)
étant définie pour tout couple (x,y)eR; x R}) et appartenant & un ensemble
borné dans C*(R} x Ry)-

DEMONSTRATION. Posons
(5.3 K(h,x,y) = 2n) " J;" exp(i(x—y,Eah, x, E)dE.

La transformée de Fourrier discréte, tout comme dans le cas continue, faisant
correspondre 4 la convolution discréte de deux fonctions de maille, le produit
de leurs images de Fourrier discrétes, on obtient immédiatement la formule (5.2)
avec le noyau K(h,x,y) défini par la formule (5.3). Il reste & démontrer que la
famille de fonctions (5.3) appartient & un ensemble borné dans C*(R} x RJ).
Ceci s’ensuit immédiatement des inégalités (2.6). En effet, sous les hypothéses
du théoréme, I'inégalité (2.6) avec a = O donne:

(54) | Geryi| sy < 00, V(j,N)eZi x 7).

Puis, pour tout || = on a:
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| DK x)| < @07 [, €] |athx, ) dz <

n
h

=C - <C§>‘("+1)la(h,x,é),<cg>(n+j+l)df< (o Scupla(h’x’é)l<gg>n+j+l.
&5k

Maintenant, vue l'inégalité évidente
|ath, %, )| L™ < |a] e je)
et 'inégalité (5.4) avec j = 0, nous sommes conduit 4 la conclusion que

sup | DyK(h,x,y)| < o0, VaeZl.
h,x,y

On démontre de fagon analogue les inégalités

(5.5) sup | DyDEK(h,x,y)| < 0, V(& f)eZ’xZ%,
h,x.y

utilisant dans ce cas les inégalités (5.4) avec j < lB] .
Le théoréme 5.1 est démontré.

Comme une conséquence simple du théoréme 5.1, on obtient le résultat suivant:
THEOREME 5.2. Une famille A" d’opérateurs aux différences finies est bien

définie par son symbole gradué or(a) modulo un opérateur T:, , ce dernier
appliquant tout espace H((0,hy) dans C*(0,h,).

DEMONSTRATION. Soient A: et Ay deux familles de o.d.f. ayant o (a) pour
symbole gradué. La différence A’{ — A% = R"en vertu du théoréme 5.1 peut étre
mise sous la forme (5.2). Les propriétés du noyau K(h,x,y) dans (5.2) établies
par le théoréme précédent, garantissent la continuité de I’application:

R™ H(0,hp) > C*(0, ko)

quelque soit se R,

6. Composition de familles de o.d.f.

On va montrer dans ce paragraphe que la composition de deux familles de
o.d.f. est encore une famille de 0.d.f. et on va expliciter la formule pour le symbole
et symbole gradué d’une composition par les symboles et symboles gradués des

familles données initialement. On va ennoncer le résultat:

THEOREME 6.1. Soient deux familles de o.d.f. A* et B" d’ordres respective-
ment v et u et de symboles a(h,x,&) et b(h,x,&). Alors la composition A*o B
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est une famille de o.d.f. d’ordre v + u qui pour tout NeZt, N = 1, peut étre
mise sous la forme

(6.1) Ao B" = X Ci+Ry,

05jsN-1

ou les familles de o.d.f. C;f sont d’ordre v+ u —j et ont pour symbole les
Jonctions matricielles

©2) Ghnd) = T —a(hw Obhx0),
fel=j %-
en outre, la famille de o.d.f. R} est continue de Hy(0, ho) dans H,_,_,+n pour

. . . 3 I Ysye h
tout seR‘, Iestimation suivante étant vérifiée pour Ry;

(6.3) | R

He=Hy-p+nN = C(Sa‘),/l’Ns n) [ b(x) |s=puf+IN=V|+N|_,

b |ﬁ<x>|Svu|+|N—v|§al|a]—v .
fa] =N

La constante C(s,v,u, N,n) dans le second membre de (6.3) dépend seulement
des parametres s,v,u,N,n.
Pour le symbole gradué o,(a o b) de la composition A"o B"la formule suivante
est vérifide:
1 ,; «

(6.4) or(@ob) = X 5t DL b(x.2),

Jrka .
ici on a noté par op(a) et o(b) respectivement les symboles gradués de A
et de B",

6.5) or(a) = XJa(x,&), ord%a=s;,
Jjzo
or(b) = X *b(x,8), ord* =r,,
k20
en outre, 'ordre de 6g(ja(x, EDI*b(x, E)) étant:
(6.6) ord (3;(la(x, )DL b(x, ) = s;+ 1. —|af .

DEMONSTRATION.  Utilisant la mise en forme (4.3) d’une famille de o.d.f. et le
théoréme de Fubini, il vient

(6.7) 5'(€) = Fyag([A" 0 B*Ju) =
= @ [, 0 [ [ 0 = n.0B =, 9 ae

nsh

Appliquant la formule de Taylor a a"(h, y,1), en tant que fonction de 7, avec le
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point 7 pour centre; désignant par R} le reste de la formule de Taylor mis sous
la forme de Lagrange et posant

(6.8) Pl t7) = 1Bk, 7) = B, 7,7)
on obtient
1 z
(6.9) "= I —eo™ f ] a"(z)[f L a (hE—n,1)
la]sN-1 o! Ton LI

b,y -1, 7)dn ]d’t

T (27r)_"frn #'(z) ”T o "y E—1,7)

la] SN-1 ?
-1, r)dn] dt +

+ @ [ 0 [, Rt e, 0801~ 0]

Notant que

ah -
Jor & Wt n, B ,9n = Fove (e, 9.0, 0)

on obtient, compte tenu de (6.2), que la premiére somme dans (6.9) soit précisé-
ment

(6.10) ) . ( X Ch ) .
0SjSN-1
Ainsi, il reste, pour démontrer la premiére partie du théoréme, a estimer la se-
conde somme et le dernier terme dans le second membre de (6.9). L’estimation
voulue résultera des trois lemmes suivants.
LeMME 6.1. Soient deux noyaux Ki(h,x,7),j = 1,2,0 < h £ ho, (1,7 €

TenX Ty, vérifiant les conditions:

(K1 =sup [, sup|K,(h 9] dx < oo
h XIrh
on pose

K(h,f—‘[, 1) = ™ Kl(h’é_n’GT)KZ(h:n_T) T)d"

wsh
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avec ©, =1+qn-1), 05 g =1, (t,MeT X Ty,
Alors la famille uniparamétrique d’opérateurs K",

K')® = [0 Kb =500

est borné dans L,(T;,) uniformément par rapport au paramétre h; en outre,

(6.11) sup| K*| o1, = [K(][K,].
h

a~h

LemME 6.2. 7, || S N—1, étant défini par la formule (6.8) et
g =|N-—v| +|s—p|, on pose

©12) “P(LED = |, T Na (e —n, o) (hn—r, 1) LD " dn.

Tyon

Alors la famille d’opérateurs intégraux “P" ayant les Sfonctions (6.12) pouy
noyaux, est uniformément bornée dans L,(T; ,); en outre

(6.13) 1P anrs £ € Geryars]jag -] Bexyaen] -

la constante C dans le seconde membre de (6.13) ne dependant que de N,s,v,y,n.

LeMME 6.3. R} étant le reste dans la formule de Taylor dans (6.9) et le
nombre g étant le méme que dans I’énoncé du lemme 6.2, on pose:

614 Py(h 1) = | . " TR E~n,n, 08" (hon — 7, 1) (L T

Alors la famille Pl d’opérateurs intégraux ayant les fonctions (6.14) pour
noyaux, est uniformément bornée dans Li(T},); en outre, avec une constante
ne dépendant que de v, u,s, N,n I'inégalité est vérifide

(615) ” P’I:I uLz—’Lz =C Z ld{x>q.§“l[a|—vlg(x)q+N,~u

la} =N
Utilisant le lemme 6.2 et le lemme 6.3 pour estimer respectivement la seconde
somme et le reste dans le second membre de (6.9), nous obtenons immédiatement,
compte tenu de (6.10), la représentation (6.1), (6.2) et I’estimation (6.3). Notons
par ar(a o b) le symbole gradué dans le second membre de (6.4). Le théoréme
2.1 permet d’affirmer qu’il existe un symbole c(h,x,&)e %, ,,, ayant or(a o b)

pour symbole gradué. Cela étant et compte tenu des relations (6.1)-(6.4), il est
facile de vérifier la formule
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Ao B =cCc'+ 1,
ici C"est la famille des o.d.f. ayant c(h, x, £) pour symbole.
En effet, vus (6.1)-(6.4), un calcul facile donne

or(d"oB"~C" =0
Compte tenu du théoréme 5.1., on a
A"oB"~C" = T! .

I1 reste 2 démontrer le lemme 6.1. qui sera ensuite utilisé pour la démonstration
des lemmes 6.2 et 6.3,

DEMONSTRATION DU LeEmMME 6.1. Vu le lemme de Schur, il suffit de vérifier
les inégalités

(6.16) sup an K(h,é—1,1)| dé < [K,] [K,]
hyt £:h

et

(6.17) sup JT" K(h,&—7,7)|dr £ [K,] [K.] .
L4 ch

On va commencer par (6.16), On a

supf,, K| dé < sup f,,f”
by Tg.h] , h,t Tgm T.,‘h

= s [, [ K= | [ [Kiht=n.0)]dz]an

Ki(h’ ¢ -1, ®r) l I Kl(hs n— T,T), d’ldé

I

sup [, Kot dn [, |Kilh009]d2 = (KiK.
T mh &h

Puis, on a:
sup [ || dz ssup [0 [, 1Kulh,E=1,0)]| Kol =5,9)] dnds
h& JT? R4 nnY nan

< sup J . sup |Ky(h,E—n, ®)'[J

ne JTn 0cTgh T,
= [K,] [K:],
ce qui prouve (6.17).

sup | Ky(h,n—1,0)] dt] dn
9eTg

DEMONSTRATION DU LEMME 6.2. L’inégalité de Peetre donne:
|6 <4 [, G| @ G,
nh

C T =1, CON Ty
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Posant -
a * o] -
Ky(h, 1,1y = <& [ a® "(hg, )| <L
Ky(hx,7) = O (b, g, )| <Y

et appliquant le lemme 6.1 on obtient pour la famille d’opérateurs *P"
I’estimation

%" iaea S K TR
Puis, compte tenu de (2.5) et (4.7), il vient
(6.18) [Ki] £ | Ggayae]aj=s-
Pour démontrer le lemme 6.2 il reste a obtenir ’estimation
(6.19) [K2] £ C|bgeyatn|_, .

Utilisant la formule de Poisson, qui etablit le rapport entre les transformées
de Fourrier integrale et discréte, on peut écrire:

Wb,y = o ZZ [x% = (x + 2mpr ' h Y Jb(h, x + 2myr ~th 4 7).
yeiZn
Notant que
sup, [2% = G+ 2mpr BTV K+ 2mpr T TR S el R Ve 7
xeTyn
on obtient

~

| “F(h 20| £ Cl R X G+ 2myr TN B,y + 209r T T 1)

a#yeZ"

VkeZl
de sorte que

[K,] £ (o, k)hk—M pX - <C,>q<x + 27tyr_1h_1)k .
x.h

yeZn
|bh x4+ 2 T T N Ty <

< o[ Blh 0[Oy,

4

Posant kK = N et notant que

RN RN SN < (N, ko) (0 < b < hy),
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la constante c¢(N,n, hy) ne dépendant que de N,n et hy, on obtient 1’inégalité

(6.19) avec une constante ¢ ne dépendant que de N, n et hy. Le lemme 6.2. est
démontré.

DEMONSTRATION DU LEMME 6.3. On va avoir besoin de 1’expression explicite
pour Ry: { ~
Ryhpn = T —a*'(h,1,0)(1—0)",

[«] =N
ici ®, =1+qn—1).
Utilisant I’identité

1Bt = B (1) +7h, 1,1,

appliquent une fois de plus le lemme 6.1 et raisonnant exactement de la méme
maniére que dans la démonstration du lemme 6.2, on obtient ’estimation cherchée
(6.15). Le lemme 6.3 est démontre.

Cela achéve la démonstration du théoréme 6.1.

Il y a lieu de noter que les opérateurs C'J'- dans la répresentation (6.1) ne sont
pas définis de facon unique, quoique le symbole gradué op(a o b) est bien défini
par les symboles gradués or(a) et o(b). Ainsi il est possible de donner d’autre
représentations de la composition A"0 B" analogues 4 1a mise en forme (6.1).

En particulier, lorsque le symbole a(h,x,&) de la famille A" peut &tre mis
sous la forme d’un polyndme de ({,,{;), 1a formule (6.1) peut étre remplacée par

une autre, cette derniére étant plus commode dans les applications. Notamment,
le théoréme suivant est valable:

THEOREME 6.2. Sous les hypothéses du théoréme 6.1 et sous I’hypothése
supplémentaire que le symbole a(h,x,&) de la famille A de o.d.f. soit un poly-
néme de (Q,Zg), tel que azafa(h,x,é)e.?v_lal_m, la formule suivante est
vérifiée
(6.21) A'oB*= X C}.

jzo
Ici Chsont des familles de o.d.f. de symboles

(6.22) c¢;(h,x,8) = [a]+[281=j (a:lg)—!(l +ik§§)¢(1—ik5§)ﬂ
zofath,x, &D ], DL 1b(h, x, &)

0, et Oy désignant respectivemnt les différentiations par rapport a (. et Les

ordC?=v+u—j.
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DEMONSTRATION. Notons que
(6'23) Cr” = Ctj + (1 + ihthj)Cr”—tj‘

utilisant la représentation (6.7), la formule (6.23) et le fait que a(h, x, &) soit un
polyndme de , Zg, nous obtenons, aprés une série de calculs élémentaires, les
formules (6.21), (6.22).

Notons que si a(h, x, ) est une fonction indéfiniment différentiable de (.
telle que agaga(h,x, He Ly~ |a)-1p)» OO Peut obtenir dans ce cas pour la compo-
sition A"o B" la formule (6.1) dans laquelle les symboles des opérateurs ij sont
calculés d’aprés les formules (6.22), et le reste vérifie I’estimation (6.3). Dans ce
cas I’évaluation se fait de la méme maniére que dans la démonstration du théo-
réme 6.1. — Les formules (6.21), (6.22) sont plus commodes dans les applications,
vu le fait que la plupart de bonnes approximations des opérateurs différentiels
sont des polynomes en {; et {, et que dans ce cas la somme (6.21) est finie. Un
autre avantage que présente l'utilisation des formules (6.21), (6.22), consiste
dans le fait que pour leur application il suffit de définir les symboles a(h, x,&) et
b(h,x,£) seulement aux points du réseau R ,.

7. Opérateur conjugné

A" étant une famille de o.d.f., on définit au moyen du produit scalaire (1.1)

la famille conjuguée A" par I'égalité

(7.1) (d'u,v)" = (u, 4"v)",
Vu,ve Co(Ry), Yhe(0,h).
THEOREME 7.1. Soit une famille des o.d.f. A"de symbole a(h,x,&) e Lv.

Il existe une seule famille des o0.d.f., notée 54", qui vérifie I’égalité (7.1). En
outre, pour tout NEZ}r , N =1, il existe des familles C(')', e, C,:L, de symboles
colh, %, &), -, cn_q(h,x,&) et une famille Ry telles que I'on ait:

(7.2) 4= 0<.};v 1C,."+R,’;, ordC} =v—j,
SjEN-
avec
1
(73) cj(h’xg é) = [ IE -(Z—'-. ta:(hsx, é)’
al=j -

la famille R} étant continue de H(0,ho) dans H,_,,4(0,h) et vérifiant in-
égalité
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(1.4) IRE | =t e S c(s5v;Nym) 3 !a(x>|s|+ RACTTO
[l =N
On a désigné par ‘a(h,x,£) la conjuguée de la matrice a(h,x,&). Pour le
symbole gradué o'r('A") de la famille conjuguée ‘A" la formule suivante est
vérifiée
1

(1.5) or(‘a) = 2 gagDZ’aj(x,é)

[-79) .
les fonctions matricielles ‘a;(x,£) étant conjuguées des termes correspondants
du symbole gradué or(A"),

(1.6) or(a) = X ay(x,),orda; =s;,5 = v,

jz0
et les ordres des termes dans le second membre de (7.5) étant respectivement:
(71.7) ord (9;D3'a)(x,8)) = s, — | «].

DEMONSTRATION. L’unicité de I’opérateur ‘4" ne suscite pas de doutes, vue la
densité de Cg(Ry) dans H,(0, hy), tandis que son existence est une conséquence
immédiate du théoréme de Riesz.

La définition (3.1) d’une famille 4" des o.d.f. et 1a formule de Parseval donnent

mhmf=@w”ﬁm Z, exp(ix)a(h, x, @' (Ev(x)hy - hys& = (u,'A"v)",

£h X € Rxypy

avec la notation
(7.8) (AN = )" fr" ah(h, & ~n, Eyrm)dn .
&sh
Maintenant la formule de Taylor
@y -z 0

a* *(h, 1,m) + Ru(h, 1, &,11)
lajsN-1 o
et les mémes raisonnements que dans la démonstration du théoréme (7.2)-(7.4),
permettent d’obtenir les formules (7.2), (7.3) et Pinégalité (7.4). Utilisant de
nouveau le théoréme 2.1, on peut trouver la famille des o.d.f. C"de symbole
gradué (7.5). On déduit sans peine des relations (7.2)~(7.4), que ‘A" — = T:,.
Cette derniére égalité signifie que o (‘4") coincide avec le symbole gradué dans
le second membre de (7.5). Le théoréme 7.1 est prouvé.
Tout comme dans le cas de composition de familles des o.d.f,, les familles

C? dans les formules (7.2), (7.3) ne sont pas définies de fagon unique. Il est plus
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commode pour les applications d’utiliser une autre variante de la décomposition
(7.2), (7.3).

THEOREME 7.2. Sous les hypothéses du théoréme 7.1 et sous I’hypothése
supplémentaire que o (A" = a(h,x,&) soit une fonction indéfiniment diffé-
rentiable de ({;,(;), telle que 6Z6€a (h,x,8)e L, _ |4~ 141> la représentation sui-
vante a lieu:

(7.9) ‘"= X Cl+ Ry, ordCh=v—j,
0<jsN-1

on les familles C}', 0 <j = N—1, ont pour symboles les fonctions matricielles
¢;j(h,x,8),
1

_ - . _ 7 \B .
(7.10) ci(h,x,8) = IGH'%?]:J' @ +ﬁ)!(1 + ih{y) (1 — ihy)

’ agagD;hDg,h ta(h’ X, 6)’
et la famille Ry satisfait a Iinégalité (7.4).

La démonstration de ce théoréme est en tous points analogue a celle du théo-
réme 6.2; ’estimation du reste Rl'\} peut &tre obtenue par les mémes raisonnements
que dans la démonstration du théoréme 6.1. Notons que lorsque a(h,x,£) est
un polyndme de ({;,{;), les formules (7.9), (7.10) sont particuliérement commodes,
puisque dans ce cas R,? = 0, pour N suffisamment grand.

8. Inégalité de Garding

L’analogue discret de l'inégalit¢ de Gérding est particuliérement important
pour les applications en analyse numérique, de méme qu’il représente un intérét
pour la théorie générale des opérateurs aux différences finies. Notons que sous
une forme différente et dans un cas particulier, cette inégalité a été démontré
antérieurement dans [6] et traitée de maniére plus simple dans [8]. Comme
1 a été dit ci-dessus, les opérateurs aux différences finies considérés dans les
articles cités sont, en substence, des approximations de ’opérateur unité.

Avant de passer 4 I’énoacé de 'inégalité de Garding, nous allons munir I’espace
H(0,h;) d’une structure hilbertienne, en introduisant pour tout he(0,h,) et
pour tout couple de fonctions de maille u,ve Hy (0, hy) le produit scalaire

(8.1) o) = @u)7" | . LA (E)dE .

Bh

Pour s = 0 le produit scalaire (8.1) coincide avec (1.1); lorsque s est un entier
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non-négatif, le produit scalaire définit une topologie équivalente & la topologie
donnée par le produit scalaire

) X, D::,h“(x) D% wo(x)hy -+ hy,

la] S5 xeRx,p
et cela uniformément par rapport au paramétre he(0,h,).

Pour simplifier nous supposons dans ce paragraphe que les familles des o.d.f.
vérifient la condition: sy —s; = 1, 54 et s, étant respectivement les ordres des
deux premiers termes des symboles gradués des opérateurs aux différences finies
considérés.

TufoREME 8.1. Soit une famille P*des o.d.f. d’ordre sy, de symbole p(h,x, &)
et de symbole gradué

(8.2) or(Ph = X pi(x,&), ordp; = s;, 5o —5; 2 1.

- jzo
Supposons que py(x,&) soit une matrice hermitienne non-négative en tout
point (x,&)e Ry x (T7 {0}).
Alors Pinégalité suivante est vérifide

8.3 Re(P'u,u)f = — ¢ “ u

2 .
(so—1)/2+sh 2

ici la constante ¢ ne dépend pas de h et u.

DEMONSTRATION. Tout d’abord notons que I’on peut se borner a considérer
seulement le cas ol s = s, = 0. En effet, notantA, la famille des 0.d.f. de symbole

{{e" et posant
v = Af,+s°/2u,

on est conduit a la necessité de démontrer I’inégalité
(8.4) Re(th, ”)'5 2 —C” 3 ”2—112 B
avec ’opérateur Q" suivant

Qh = AZ—sO/ZP Ah—s—so/2

Q" étant d’ordre nul et, vu le théoréme 6.1 sur la composition, la partie principale
go(x, &) du symbole gardué o(Q") étant

go(x,&) = Ia’glhsopo(% ).
Notons, en outre, que sans restreindre la généralité, Pon peut supposer que le
symbole p(h,x,&) de P" soit également une matrice hermitienne non-négative.
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En effet, dans le cas contraire, on pourrait considérer au lieu de P" une autre
famille P} de symbole

¢:h™ % po(x, hE).
Nous allons donc démontrer I'inégalité (8.3), ensupposant que s=s,=0et que
e symbole p(h,x,&) de la famille P*soit une matrice hermitienne non-négative.

Soit ¢(®) une fonction paire non-négative de Co'(Rg) & support dans la boule
[@ [ < 1; on suppose, en outre, que

(‘]
Posons
(8.6) B, A) = LTI THAE- )
et
(8.7) OM,E,0) = X ¢ ¢ +2nirth7 ).

yeZ®

Introduisons le symbole *’régularisé’’ a(h, x, &),
(8.8) a(h,x,&) = fr,, p(h,x, )O*(h, &, 1)dA,
et notons que pour h, suffisamment petit on a pour tout he(0,hy) I'identité
68 athxd = [, s 6EE N = [ ot~ O @0

vu que supp $(®) = {| ®| <1} et que §y(€ + 2myr="h="1, 1) = (¢, A—2myr—1h-1),
Introduisons également le symbole ‘‘double’’:
(89) B0 E5) = [0 O, DpCh, 3,000, 1, 0

Notons par A"la famille des 0.d.f. de symbole a(h, x, ) et faisons correspondre
au symbole ‘“double’” b(h,x,£,n) une famille B" des 0.d.f. selon la formule

.10) Fo@ =07 [ g E-nnden,

2sh

ou 'on a noté:
bh(ha 5} Xs 17) = Fx-'x»hb(hi 59 X, ’7) .

On vérifie aisément que le symbole B(#, x, ) de B" est donné par la formule

(8.1 Blh ) = 20)™" [, exp(ExE)B0, 8,6~
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Nous allons avoir besoin de trois lemmes dont les démonstrations seront données
plus tard.

LemMe 8.1. La famille B* de symbole (8.11) est autoadjointe par rapport
au produit scalaire (1.1) et, de plus, on a

(8.12) (B'u,u)f = 0, YueHy(0,h).

LemMME 8.2. Il existe une constante ¢ indépendante de h et u telle que I’on
ait
(8.13) |Re([4" — PJu,u)y| < cflul|?y/om-

LeMME 8.3. Il existe une constante ¢ indépendante de h et u telle que I’on
ait
(8.14) | ([B" - Re A"Ju, )| < c|u|2y/0m-

On déduit immédiatement des inégalités (8.12)—(8.14) le résultat cherché:

~ Re(P"u,u)fy < ([B" —ReP"Ju,u)fy <

IIA

] [B" — Re 4"]u, u)gl + lRe([Ah - P"u, u)'(')l <

lIA

¢ ” u ”2-1/2-h .
11 reste & démontrer les lemmes 8.1-8.3.

DEMONSTRATION DU LEMME 8.1. Le symbole p(h, x, ) étant une matrice hermit-
tienne non-négative on a, vues la formule (8.9) et les propriétés de la fonctions @:

(8.15) ‘b(h,n,x,8) = b(h,&,x,n), b(h,&,x,m) 20

ofl, comme d’habitude, I’on a noté *b(h, 5, x, &) la matrice conjuguée de b(h,n, x, &).
Les relations (8.15) donnent:

(8.16) [ f . XDEDP@b(h, &, %, nyexp(ix i (ydndé

Multipliant les deux membres de 1’égalité (8.16) par hy,---,h, et sommant
par rapport 3 xeRy,, on obtient, vues les relations (8.15) et la formule de
Parseval, I'inégalité cherchée:

(B'u,u)g = (u, B'u)o 2 0
ce qui prouve le lemme 8.1.

DEMONSTRATION DU LEMME 8.2. En substance, on est ramené au probléme
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d’estimer les normes des opérateurs intégraux de L,(T;,) dans lui-méme, ayant
pour les noyaux les fonctions matricielles:

k(h,&,m) = <L A", E—n,n) — (1, E—n,m)]<GD?
h(h, &) = LA E—nym) — PP E—m ]LD?
L’inégalité de Pectre donne

(8.18) |k(h &,m)| < 25— pt| @ = B <G

Appliquant la formule de Taylor avec le centre au point # et le reste du deuxieme

(8.17) {

ordre sous la forme intégrale au symbole p(x,h,n — <C,,>*®), on obtient, vus
la formule (8.8)" et le fait que ¢*(®) soit une fonction paire:

(8.19)  a(h,x,n) — plh,x,n) = fR" [p(h, x, 1 ~ <{»*©) — p(h, x,n)]$*(©)dO
(2]

1
= fR,, f =0 X pih,x,n— t{{,>¥0)0%*(©)d1dO® .
e Jo

le] =2
11 est facile de vérifier que

(8.20) sup <{p <Crl—t(§,,)%0>—1 =C

hm|tO| £1
avec une constante C.
En effet, il suffit de démontrer (8.20) pour # vérifiant les conditions

neTi, Lpz4
avec une constante A suffisamment grande.
Posant dans ce cas
(8.21) & =1n—t{{ O
et notant que pour t,@) [ 1 le jacobien D&/Dy de la transformation (8.21)
vérifie avec une constante C l'inégalité
D¢

o ~E| s ca

on est conduit 2 la conclusion que pour 4 suffisamment grand, la transformation
(8.21) posséde une transformation inverse: = n(¢) qui vérifie I'inégalité

ygr = CUo

avec une constante C indépendante de h. Cela prouve l'inégalité (8.20).
Utilisant (8.17)-(8.20) et appliquant les mémes raisonnements que pour [’esti-
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mation du reste RY dans la démonstration du théoréme 6.1, on obtient pour
k(h, £, 1) I’inégalité

(8.21) max {sup f | k| dn,supf,, k[df} <
ne JT. hn I T,

< co I |Pextes

lal 52

ol »

avec une constante ¢, dépendant seulement de h, et n.

Les mémes raisonnements permettent d’obtenir I’inégalité (8.21) pour le noyau
*k(h,&,n), probablement, avec une autre constante c,.

Cela étant et compte tenu du lemme de Schur, on obtient I’estimation (8.13)
avec la constante

) IP<X>%€°‘ |a]
le| L
Le lemme 8.2 est démontré.

DEMONSTRATION DU LEMME 8.3. Vue la formule de Parseval, on peut réécrire
ja forme quadratique dans le premier membre de (8.14) sous la forme

®23)  ([B*—Red"uu): = f | ke o) T@and
avec o ’
(824) 2k(h9 f, 1']) = 2 Eh(h’ 6’ é -1, 7]) - dh(hs é —n, 1’[) - tah(ha 6“”1) é) .

Posons y = &—» et notons que, vues les formules (8.8), (8.9) et compte tenu
du fait que le symbole p(h, x, £) est hermitien, les identités suivantes sont valables:
(8.25) a'hm) = B'hn,0m,

@h,10,8) = B+ 10n+ 20,

B, &, pm) = B*hym+ o 1,m) = Bk, 2+ 1) -
Puis posant

0'm) = C=H(),

on ramene la démonstration de 'inégalité (8.14) & ’estimation dans L,(T;";) d’une
forme quadratique & noyau

(8.26) G(h, &,m) = L*h(h, &) <LHF

On vérifie aisément, utilisant le lemme de Schur, que
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8200 sw | [, [0 G EMT T Enaz |5
h &n neh

< M [, 0@ az
h z'h
avec une constante M, donnée par la formule

(826)” M = (277:) " R Slipg <C§>%<Cn>% l 25(’1:« f: X '1) - d(ha X '1) - tﬁ(h’ Xs é) l dX

x

Vues les relations (8.24), (8.25), on peut réécrire le noyau G de maniére suivante:
G &) = Lo 0" + 2, 0,m) = B'(hym, 1) +
+ By, x4 1) — B + 0 + DI =
= {[B"(h,n + %M st = By, 1, m) KEFT G
8.27) + B0, 1, m) [<GF ~ Gy TGN} +
+ (LB, xon + 0D = B Ban + 27 + ) Gy
+ By + 0001+ 0 [KGadt = D1t
= G, + G, + G; + G,.

I

Puis, il est évident que:

G,

1
[ < 0 + 10,

1
d -
G3 - J; <§q+x>*a[bh(h’n + tX,X,’? + X)<Zq+tx>%]dt .

Utilisant une fois de plus la formule de Leibniz-Newton, on obtient:
8.28) G{+G; =
o 3 4 1] )
= - ds {<Cﬂ+sx> E[<Cq+t;> b(h,n + ty,n + SX)]! dids .
0 0
Pour plus de commoditi¢ introduisont les notations:
(8.29) Ly = LD

OB (h, &, x,m) = b (&, p,)

Désignant par @ la fonction sous le signe d’intégrale dans le second membre
de (8.28), différentiant, utilisant (8.29) et notant que
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__d_ + _ ]_‘_ -3/2 o ay, &
(830) at <Ct> = 4<Ct> ]a|2=l (Ct + Zt)x s
on trouve
630 @ = T T B+ onn+o0r -

1 - o o
- Z(C&*(CQ 32 | l_zvl-m_l(cf%’f)b”"’ (han + taoxon + sOx —

1 - sy, 0.8h
ST B G DR+ n + s -

- EETWTR D @@+ X

la] =181 )
BM(hn + 1 2on + s0)x°A.

Vue la formule de Poisson (cf. [2]), on peut écrire pour tout symbole double
Ch,&,x,n):

(8.32) Crh, & xomx® = Coh, &, x,m) + Q.(CY,

avec

(8.33) 0.0 = — X CM,&x+2myr-th=1,n) (x + 2nyr=th=1)"
O#yezZn

et comme d’habitude,

C:(hyé’x»n) = Fx-’x,h(DiC(h,g,xan))a

yr

Gurg Y ey TR,

Maintenant on peut réécrire (8.31) sous la forme:

a B
(8.34) © = — (K " |E| barg(h,n + tr, 1,1 + s%) —
al =g =1

1 _ g, @0
= Z<EXLS s X @+ b "+t + sy)

fa}=16] =1
1, - x| pay, O
- a(C:) 3/2<Cs>* " El & +Z,)ba+ﬂ"(h,r] + t, 01 + Sx)
al =g =1

- 11—6<c,>‘3’2<cs>‘3’2 D (@ D@ Db Cun+n,

fz| =8

n+sx)
SR T Q) - LRy

le| =181 =

P+ 00,007 —

le| =8 =1
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1 - - ~oh
— 7<0 UYL (@ H Qs ~
le| =] =1

1 - _ R _ -

= TV T (@I DY)
la]=18] =1

Si ’on veut utiliser (8.26)" pour estimer la forme quadratique a noyau (8.26),

il faut estimer supérieurement la constante M, définie par (8.26)" ce qui conduit,

a son tour, a la nécessité¢ d’evaluer I’expression

1 1
f f f sup ' (D|dsdtdx.
Ry O JO htén

Vue l'inégalité (4.7), on obtient pour les intégrales des quatres premiéres
sommes dans ’expression de ® par la formule (8.34) la majorante suivante:

~

639 [aow Gt T [stme ] d+

FARNR lal =8} =

~

Jor Pty T il dr +
x him [z =] =1

-+

ST

~

L, uwp tTHI T WA E | dr+

x 88 al ={g]=

N =

-+

NS

[ sty sy LI kx|

2

Intégrant les restes Q,(C") par rapport 4 y et évaluant les intégrales de la méme
maniére que dans la démonstration du théoréme 6.1., on obtient pour eux une
estimation dont le second membre est le produit de la majorante (8.35) par une

constante indépendante de h.
Maintenant on va estimer les intégrales des fonctions G, et G, dans (8.27).
Notant que

(8.36) [<Cpadt — L] S DK,
il vient:
|Go| = [B"h,m, am)| | <Cyad? = CF| OB
< [P nm| <Gy £ | bt )]

La derniére inégalité donne
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630 [, sw0lGildr s [, sup|beolhnnnm]dr.
X meam X ho
On obtient de la méme maniére I’estimation (8.37) pour G, dans (8.27).
Finalement, la constante M donnée par (8.26)" est majorée par la somme
de la majorante (8.35) (multipliée par une constante) et de la majorante (8.37)
multipliée par deux. Puis notant que pour & < hg, h, étant suffisamment petit,
on a

[1r cwolopmenar = [, @otlotd ™ st - as

et que
sw [, M 2L HTHE ]y < o

on peut majorer la constante (8.35), vues la formule (8.9) et I'inégalité de Schwartz,
par la quantité

(8.38) Co l ﬁ(x)ll 0>

ici la constante C, ne dépend que de hg et n.
Puis notant que pour h £ hy, h, étant suffisamment petit, on a I’égalité

[ @020 = [ dienar = 1

At

et utilisant la formule (8.8) et la premiére des identités (8.25), on peut évaluer
supéricurement I’intégral dans le second membre de (8.37) par la quantité

(8.39) Co |13<x>2 Io ,

ou C, est une constante qui ne dépend que de h; et n.

Ainsi, la constante M dans (8.26)" est bornée supérieurement par une majorante
du type (8.39); vue 'inégalité (8.26)", cela donne I’inégalité cherchée (8.14) avec
une constante du méme type (8.38). Le lemme 8.3 est démontré.

Cela achéve la démonstration du théoréme 8.1.
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